探究Python多进程编程下线程之间变量的共享问题
1、问题:
群中有同学贴了如下一段代码,问为何 list 最后打印的是空值?
from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def testFunc(cc): vip_list.append(cc) print 'process id:', os.getpid() if __name__ == '__main__': threads = [] for ll in range(10): t = Process(target=testFunc, args=(ll,)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print vip_list
其实如果你了解 python 的多线程模型,GIL 问题,然后了解多线程、多进程原理,上述问题不难回答,不过如果你不知道也没关系,跑一下上面的代码你就知道是什么问题了。
python aa.py process id: 632 process id: 635 process id: 637 process id: 633 process id: 636 process id: 634 process id: 639 process id: 638 process id: 641 process id: 640 ------------------------ process id: 619 []
将第 6 行注释开启,你会看到如下结果:
process id: 32074 process id: 32073 process id: 32072 process id: 32078 process id: 32076 process id: 32071 process id: 32077 process id: 32079 process id: 32075 process id: 32080 ------------------------ process id: 32066 [3, 2, 1, 7, 5, 0, 6, 8, 4, 9]
2、python 多进程共享变量的几种方式:
(1)Shared memory:
Data can be stored in a shared memory map using Value or Array. For example, the following code
http://docs.python.org/2/library/multiprocessing.html#sharing-state-between-processes
from multiprocessing import Process, Value, Array def f(n, a): n.value = 3.1415927 for i in range(len(a)): a[i] = -a[i] if __name__ == '__main__': num = Value('d', 0.0) arr = Array('i', range(10)) p = Process(target=f, args=(num, arr)) p.start() p.join() print num.value print arr[:]
结果:
3.1415927 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
(2)Server process:
A manager object returned by Manager() controls a server process which holds Python objects and allows other processes to manipulate them using proxies.
A manager returned by Manager() will support types list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value and Array.
代码见开头的例子。
http://docs.python.org/2/library/multiprocessing.html#managers
3、多进程的问题远不止这么多:数据的同步
看段简单的代码:一个简单的计数器:
from multiprocessing import Process, Manager import os manager = Manager() sum = manager.Value('tmp', 0) def testFunc(cc): sum.value += cc if __name__ == '__main__': threads = [] for ll in range(100): t = Process(target=testFunc, args=(1,)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print sum.value
结果:
------------------------ process id: 17378 97
也许你会问:WTF?其实这个问题在多线程时代就存在了,只是在多进程时代又杯具重演了而已:Lock!
from multiprocessing import Process, Manager, Lock import os lock = Lock() manager = Manager() sum = manager.Value('tmp', 0) def testFunc(cc, lock): with lock: sum.value += cc if __name__ == '__main__': threads = [] for ll in range(100): t = Process(target=testFunc, args=(1, lock)) t.daemon = True threads.append(t) for i in range(len(threads)): threads[i].start() for j in range(len(threads)): threads[j].join() print "------------------------" print 'process id:', os.getpid() print sum.value
这段代码性能如何呢?跑跑看,或者加大循环次数试一下。。。
4、最后的建议:
Note that usually sharing data between processes may not be the best choice, because of all the synchronization issues; an approach involving actors exchanging messages is usually seen as a better choice. See also Python documentation: As mentioned above, when doing concurrent programming it is usually best to avoid using shared state as far as possible. This is particularly true when using multiple processes. However, if you really do need to use some shared data then multiprocessing provides a couple of ways of doing so.
5、Refer:
http://stackoverflow.com/questions/14124588/python-multiprocessing-shared-memory
http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing/
http://docs.python.org/2/library/multiprocessing.html#multiprocessing.sharedctypes.synchronized

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
