python numpy library
python-numpy
Writing and accessing csv files
Writing csv files
CSV (Comma-Separated Value, comma separated value), is a A common file format used to store bulk data.
Write csv file
np.savetxt(frame, array, fmt='%.18e', delimiter=None) • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件 • array : 存入文件的数组 • fmt : 写入文件的格式,例如:%d %.2f %.18e • delimiter : 分割字符串,默认是任何空格
Example:
>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%d',delimiter=',')
The obtained file is like this
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59 60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99
Change the parameters to float Point writing
>>> a = np.arange(100).reshape(5,20)>>> np.savetxt('a.csv',a,fmt='%.1f',delimiter=',')
0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0 20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0 40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0 60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0 80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0
Read csv file
Read csv file
np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False) • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件 • dtype : 数据类型,可选 • delimiter : 分割字符串,默认是任何空格 • unpack : 如果True,读入属性将分别写入不同变量
Example:
>>> b = np.loadtxt('a.csv',delimiter=',')>>> b array([[ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], [ 20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39.], [ 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59.], [ 60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79.], [ 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99.]])>>> b = np.loadtxt('a.csv',dtype=np.int,delimiter=',')>>> b array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,17, 18, 19], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,37, 38, 39], [40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,57, 58, 59], [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76,77, 78, 79], [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96,97, 98, 99]])
CSV can only effectively store one-dimensional and two-dimensional arrays
np.savetxt() np.loadtxt() can only effectively access one-dimensional and two-dimensional arrays
Access to multi-dimensional data
Writing of multidimensional data
a.tofile(frame, sep='', format='%s') • frame : 文件、字符串 • sep : 数据分割字符串,如果是空串,写入文件为二进制 • format : 写入数据的格式
Example;
>>> a = np.arange(100).reshape(5,10,2)>>> a.tofile("a.dat",sep=',',format='%d')
Contents of a.dat:
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99
If the delimiter is not specified, then The resulting binary file cannot be read with a text editor.
Reading of multidimensional data
np.fromfile(frame, dtype=float, count=‐1, sep='') • frame : 文件、字符串 • dtype : 读取的数据类型 • count : 读入元素个数,‐1表示读入整个文件 • sep : 数据分割字符串,如果是空串,写入文件为二进制
numpy’s random number function
NumPy’s random sublibrary
np.random.*
Function | Description |
---|---|
rand(d0,d1,...,dn) | Create a random number array based on d0-dn, floating point number, [0,1), uniform distribution |
randn(d0,d1,...,dn) | Create a random number array based on d0-dn, standard normal distribution |
randint(low[,high,shape]) | Create a random integer or integer array based on shape , the range is [low,high) |
seed(s) | random number seed, s is the given seed value |
shuffle(a) | Permute according to the first axis of array a, change array a |
permutation(a) | According to the array The first axis of a generates a new out-of-order array without changing the array a |
from the one-dimensional array Elements are extracted from a with probability p to form a new array of size shape. replace indicates whether it is possible to reuse elements. The default is False | |
generated Array with uniform distribution, low starting value, high ending value, size is of shape | |
Produces a normal distribution Array, loc is the mean, scale standard deviation, size is the shape | |
generates an array with Poisson distribution, lam is the occurrence of random events Rate, size is the shape |
NumPy directly provides statistical function
np.*Description | |
---|---|
According to the given Calculate the sum of related elements of array a with a given axis, axis integer or tuple | |
Calculate the related elements of array a with a given axis Expectation, axis integer or tuple | ##average(a,axis=None,weights=None) |
std(a,axis=None) | |
var(a,axis = None) | |
min(a) max(a) | |
argmin(a) argmax(a) | |
unravel_index(index,shape) | |
ptp(a) | |
median(a) | |
Gradient: the rate of change between consecutive values, that is, the slope |
>>> a = np.random.randint(0,20,5)>>> np.gradient(a) array([ 9. , -0.5, -2. , -3. , -12. ])
The above is the detailed content of python numpy library. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
