Table of Contents
Development environment
Editor" >Editor
Cloud computing
Editor
Local environment
Project development
Management tools
Web Framework
ORM
Database
No SQL:
Distributed storage
Message queue
Project deployment
Server
Front-end basics
Home Backend Development Python Tutorial Detailed introduction to Python technology stack and tool organization

Detailed introduction to Python technology stack and tool organization

May 07, 2017 am 11:09 AM


Development environment

Editor

  • ##vim / SublimeText2 / PyCharm

    Use Just make it easy, I converted from vim to PyChram. The integrated development environment has much better functions such as auto-completion and single-step debugging, which help improve work efficiency.

Local environment

  • pip/easy_install package management

  • viertualenv + virtualenvwrapper library/version management , Environment isolation

  • ipython/ipdb

Project development

Management tools

  • git

Web

Framework

ORM

  • SQLAlchemy: Standard.

  • pymongo: Access

    mongodb.

  • peewe: A lighter ORM, simple to understand, never used in production environment.

Database

  • Relational databasemysql

No SQL:

Distributed Storage

  • HDFS: hadopp ecology

  • Hive: Analysis log

Message

Queue

  • RabbitMQ: pika operation in python.

Project deployment

Server

  • ##nginx

    , mainly used for load balancing, reverse generation, etc.

  • uWSGI

    , used to deploy Django projects.

  • gunicorn

    a Python WSGI HTTP Server for UNIX, used to run the Flask project

  • Operation and maintenance management

  • saltstack

    : Alias, salt stack. Automated operation and maintenance tools.

  • puppet

    : This product was developed in Ruby and is used on a large scale by Baidu and Xiaomi.

  • fabric

    : Used for automated deployment.

  • Supervisor

    A Process Control System, configures and manages various programs, process monitoring, automatic restart, etc.

  • Three-party library

  • requests

    HTTP for humans, very easy to use, highly recommended

  • beautifulsoup

    Cooperate with urllib2 or requests library for simple crawling and analysis work

  • ##scrapy
  • Very awesome crawling framework, Suitable for large-scale crawling tasks with complex requirements

    Others
Front-end basics

html, css,

    Design Pattern
  • : Although Python is not like the endless design patterns in Java, the basic Design patterns are also used. Combination,

    single case mode, decorator mode, factory mode are commonly used.

  • RESTful Interface.

  • MVC

  • Test: Unit test, performance test.
    Only by comparison can there be differences. Look at other people's codes and learn from them to improve.

Cloud computing

  • Big data: Hadoop ecosystem.

  • Virtualization: Docker, KVM, OpenStack.

  • Public cloud: AWS, Alibaba Cloud, Azure, Kingsoft Cloud.

  • Private cloud: Baidu's private cloud is well built and leads the industry in distributed storage and virtualization.

Development environment

Editor

  • vim / SublimeText2 / PyCharm
    Use Just make it easy, I converted from vim to PyChram. The integrated development environment has much better functions such as auto-completion and single-step debugging, which help improve work efficiency.

Local environment

  • pip/easy_install package management

  • viertualenv + virtualenvwrapper library/version management , Environment isolation

  • ipython/ipdb

Project development

Management tools

  • git

Web Framework

  • Tornado: asynchronous, high performance, latest version 4.0.

  • Flask: Lightweight! It can flexibly combine various components for development (third-party components are abundant), it is simple and efficient, and facilitates rapid development and maintenance.

  • Django: Somewhat heavy, with numerous configurations and conventions, you can quickly develop some "management" backends.
    There are also many Python Web frameworks, and these three are currently the mainstream ones. The Tornado currently used in my work has excellent performance.

ORM

  • SQLAlchemy: Standard.

  • pymongo: access mongodb.

  • peewe: A lighter ORM, simple to understand, never used in production environment.

Database

  • Relational database: mysql

No SQL:

  • redis cache/persistence/special requirements (counting-ranking-timeline, etc.)

  • memcached cluster, mostly used for time-limited cache

  • mongodb

Distributed storage

  • HDFS: hadopp ecology

  • Hive: Analysis log

Message queue

  • RabbitMQ: pika in python operate.

Project deployment

Server

  • ##nginx, mainly used for load balancing, reverse generation, etc.

  • uWSGI, used to deploy Django projects.

  • gunicorn a Python WSGI HTTP Server for UNIX, used to run the Flask project

Operation and maintenance management

  • saltstack: Alias, salt stack. Automated operation and maintenance tools.

  • puppet: This product was developed in Ruby and is used on a large scale by Baidu and Xiaomi.

  • fabric: Used for automated deployment.

  • Supervisor A Process Control System, configures and manages various programs, process monitoring, automatic restart, etc.

Three-party library

  • requests HTTP for humans, very easy to use, highly recommended

  • beautifulsoup Cooperate with urllib2 or requests library for simple crawling and analysis work

  • ##scrapy

    Very awesome crawling framework, Suitable for large-scale crawling tasks with complex requirements

  • Others

Front-end basics

    html, css, javascript , jquery, bootstrap, angularjs, react, vue.js. As a back-end engineer, it is also necessary to understand some basic front-end knowledge. In my current work, I use
  • bootstrap

    +angularjs to develop the backend management system.

  • Software Engineering

    Design patterns: Although Python does not have endless design patterns in Java, basic design patterns are also used. . Combination, singleton mode, decorator mode, factory mode are commonly used.
  • RESTful interface.
  • MVC
  • Testing: unit testing, performance testing.
  • Only by comparison can there be differences. Look at other people's codes and learn from them to improve.


  • Cloud computing

    Big data: Hadoop ecosystem.
  • Virtualization: Docker, KVM, OpenStack.
  • Public cloud: AWS, Alibaba Cloud, Azure, Kingsoft Cloud.
  • Private cloud: Baidu's private cloud is well built and leads the industry in distributed storage and virtualization.

The above is the detailed content of Detailed introduction to Python technology stack and tool organization. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

How to run programs in terminal vscode How to run programs in terminal vscode Apr 15, 2025 pm 06:42 PM

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

See all articles