python实现的一个p2p文件传输实例
考虑到我手上的服务器逐渐的增多,有时候需要大规模的部署同一个文件,例如因为方便使用systemtap这个工具定位问题,需要把手上几百台服务器同时安装kernel-debuginfo这个包,原有的方式采用一个源服务器,采用rsync或者scp之类的文件传输方式只能做到一个点往下分发这个文件,这个时候下发的速度就会比较的慢,基于以上原因,我写了一个基于bt协议传输文件的小工具,实际测试,传输到10个机房,70多台机器传输一个240M的这个内核文件,到所有的机器,源采用限速2m/s的上传速度,测试的结果大概只要140s,就可以全部传输完毕,这个效率是非常之高,如果不限速的情况下速度会更快,下面把这个程序开源出来。
代码如下:
#!/usr/bin/env python
import libtorrent as lt
import sys
import os
import time
from optparse import OptionParser
import socket
import struct
import fcntl
def get_interface_ip(ifname):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 0x8915, struct.pack('256s',
ifname[:15]))[20:24])
def ip2long(ip):
return reduce(lambda a,b:(a
def get_wan_ip_address():
interfaces = set(['eth0', 'eth1', 'eth2', 'eth3', 'em1', 'em2', 'em3', 'em4'])
ip = ''
for i in interfaces:
try:
ip = get_interface_ip(i)
if (ip2long(ip) ip2long('10.255.255.255')) \
and (ip2long(ip) ip2long('172.33.255.255')) \
and (ip2long(ip) ip2long('192.168.255.255')):
return ip
except:
pass
return ip
def make_torrent(path, save):
fs = lt.file_storage()
lt.add_files(fs, path)
if fs.num_files() == 0:
print 'no files added'
sys.exit(1)
input = os.path.abspath(path)
basename = os.path.basename(path)
t = lt.create_torrent(fs, 0, 4 * 1024 * 1024)
t.add_tracker("http://10.0.1.5:8760/announce")
t.set_creator('libtorrent %s' % lt.version)
lt.set_piece_hashes(t, os.path.split(input)[0], lambda x: sys.stderr.write('.'))
sys.stderr.write('\n')
save = os.path.dirname(input)
save = "%s/%s.torrent" % (save, basename)
f=open(save, "wb")
f.write(lt.bencode(t.generate()))
f.close()
print "the bt torrent file is store at %s" % save
def dl_status(handle):
while not (handle.is_seed()):
s = handle.status()
state_str = ['queued', 'checking', 'downloading metadata', \
'downloading', 'finished', 'seeding', 'allocating', 'checking fastresume']
print '\ractive_time: %d, %.2f%% complete (down: %.1f kb/s up: %.1f kB/s peers: %d, seeds: %d) %s' % \
(s.active_time, s.progress * 100, s.download_rate / 1000, s.upload_rate / 1000, \
s.num_peers, s.num_seeds, state_str[s.state]),
sys.stdout.flush()
time.sleep(1)
def seed_status(handle, seedtime=100):
seedtime = int(seedtime)
if seedtime seedtime = 100
while seedtime > 0:
seedtime -= 1
s = handle.status()
state_str = ['queued', 'checking', 'downloading metadata', \
'downloading', 'finished', 'seeding', 'allocating', 'checking fastresume']
print '\rseed_time: %d, %.2f%% complete (down: %.1f kb/s up: %.1f kB/s peers: %d, seeds: %d) %s' % \
(s.active_time, s.progress * 100, s.download_rate / 1000, s.upload_rate / 1000, \
s.num_peers, s.num_seeds, state_str[s.state]),
sys.stdout.flush()
time.sleep(1)
def remove_torrents(torrent, session):
session.remove_torrent(torrent)
def read_alerts(session):
alert = session.pop_alert()
while alert:
#print alert, alert.message()
alert = session.pop_alert()
def download(torrent, path, upload_rate_limit=0, seedtime=100):
try:
session = lt.session()
session.set_alert_queue_size_limit(1024 * 1024)
sts = lt.session_settings()
sts.ssl_listen = False
sts.user_agent = "Thunder deploy system"
sts.tracker_completion_timeout = 5
sts.tracker_receive_timeout = 5
sts.stop_tracker_timeout = 5
sts.active_downloads = -1
sts.active_seeds = -1
sts.active_limit = -1
sts.auto_scrape_min_interval = 5
sts.udp_tracker_token_expiry = 120
sts.min_announce_interval = 1
sts.inactivity_timeout = 60
sts.connection_speed = 10
sts.allow_multiple_connections_per_ip = True
sts.max_out_request_queue = 128
sts.request_queue_size = 3
sts.use_read_cache = False
session.set_settings(sts)
session.set_alert_mask(lt.alert.category_t.tracker_notification | lt.alert.category_t.status_notification)
session.set_alert_mask(lt.alert.category_t.status_notification)
ipaddr = get_wan_ip_address()
#print ipaddr
if ipaddr == "":
session.listen_on(6881, 6881)
else:
session.listen_on(6881, 6881, ipaddr)
limit = int(upload_rate_limit)
if limit>=100:
session.set_upload_rate_limit(limit*1024)
session.set_local_upload_rate_limit(limit*1024)
print session.upload_rate_limit()
torrent_info = lt.torrent_info(torrent)
add_params = {
'save_path': path,
'storage_mode': lt.storage_mode_t.storage_mode_sparse,
'paused': False,
'auto_managed': True,
'ti': torrent_info,
}
handle = session.add_torrent(add_params)
read_alerts(session)
st = time.time()
dl_status(handle)
et = time.time() - st
print '\nall file download in %.2f\nstart to seeding\n' % et
sys.stdout.write('\n')
handle.super_seeding()
seed_status(handle, seedtime)
remove_torrents(handle, session)
assert len(session.get_torrents()) == 0
finally:
print 'download finished'
if __name__ == '__main__':
usage = "usage: %prog [options] \n \
%prog -d -f
or \n \
%prog -m -p
parser = OptionParser(usage=usage)
parser.add_option("-d", "--download", dest="download",
help="start to download file", action="store_false", default=True)
parser.add_option("-f", "--file", dest="file",
help="torrent file")
parser.add_option("-u", "--upload", dest="upload",
help="set upload rate limit, default is not limit", default=0)
parser.add_option("-t", "--time", dest="time",
help="set seed time, default is 100s", default=100)
parser.add_option("-p", "--path", dest="path",
help="to make torrent with this path")
parser.add_option("-m", "--make", dest="make",
help="make torrent", action="store_false", default=True)
parser.add_option("-s", "--save", dest="save",
help="file save path, default is store to ./", default="./")
(options, args) = parser.parse_args()
#download(sys.argv[1])
if len(sys.argv) != 6 and len(sys.argv) != 4 and len(sys.argv) != 8 and len(sys.argv) != 10:
parser.print_help()
sys.exit()
if options.download == False and options.file !="":
download(options.file, options.save, options.upload, options.time)
elif options.make == False and options.path != "":
make_torrent(options.path, options.save)
准备环境:
需要在所有的os上面安装一个libtorrent的库,下载地址:
http://code.google.com/p/libtorrent/downloads/list
记得编译的时候带上./configure –enable-python-binding,然后mak,make install,进入binding目录,make,make install就
可以运行这个小的工具
当然大规模部署不可能采用每一台都去编译安装的方式,只要把编译出来的libtorrent.so libtorrent-rasterbar.so.7的文件跟bt.py这个文件放到同一个目录,另外写一个shell脚本
代码如下:
lib=`dirname $0`
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$lib
python bt.py -d -f -s -t -u
使用方法:
首先在源服务器上面生成种子文件
代码如下:
python bt.py -m -p -s
发布文件
在源服务器上面,执行
代码如下:
python bt.py -d -f -s -t -u
其中做种时间默认设置的是100s,上传速度默认不限制,限制的速度单位是KB
下面的机器,直接可以
代码如下:
python bt.py -d -f -s -t
只要有一台机器完成了,就自动作为种子,在下载的过程中也会上传,任何一台机器都可以作为源服务器,当然了这里面还有中心的tracker服务器,脚本当中,我搭建了一个tracker源服务器,放到10.0.1.5端口是8760上面,当然大家也可以采用opentracker这个软件自己搭建一个tracker服务器,修改其中的源代码对应部分,另外考虑到发布都是私有文件,代码当作已经禁止了dht,如果还想更安全,就自己搭建一个私有的tracker server,具体搭建方法就使用一下搜索引擎,查找一下搭建的方法!
目前基本做到可以使用,后续考虑更简单一点,采用磁力链接的方式,这样就可以做到不用每台都要拷贝一个种子文件,采用一个单独的命令行就可以发布整个文件

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
