Home Backend Development Python Tutorial Taming Python's GIL Beast: The Art of Mastering Concurrency

Taming Python's GIL Beast: The Art of Mastering Concurrency

Mar 02, 2024 pm 04:28 PM

驯服 Python 的 GIL 野兽:驾驭并发性的艺术

python, GIL, Concurrency, Multi-threading, Multi-process

Python's Global Interpreter Lock (GIL) is a built-in mechanism that ensures that only one thread can execute Python bytecode at a time. This lock is to prevent data corruption because it prevents multiple threads from modifying shared data at the same time.

Limitations of GIL

While the GIL is critical for ensuring data integrity, it also imposes significant limitations on Python's concurrency:

  • Sequentiality: GIL forces all threads to execute sequentially, limiting the parallelism of Python concurrent programs.
  • Bottleneck: When one thread is waiting in an I/O operation or other blocking operation, the GIL prevents other threads from executing. This can cause task delays and performance degradation.

Overcoming GIL limitations

While the GIL cannot be completely bypassed, there are techniques to mitigate its impact on concurrency:

1. Multi-process

Multiple processes use multiple

operating system processes instead of Python threads to achieve concurrency. Since each process has its own GIL, they can execute simultaneously without any lock contention:

import multiprocessing

def task(num):
print(f"Process {num}: {num * num}")

if __name__ == "__main__":
processes = [multiprocessing.Process(target=task, args=(i,)) for i in range(4)]
for process in processes:
process.start()
for process in processes:
process.join()
Copy after login

2. Multithreading and Queue

Using multiple threads and queues can achieve parallelism while avoiding GIL contention. Threads put tasks into a queue, while other threads get tasks from the queue and execute them:

import threading
import queue

queue = queue.Queue()

def producer():
for i in range(10):
queue.put(i)

def consumer():
while not queue.empty():
item = queue.get()
print(f"Thread: {item * item}")

threads = [threading.Thread(target=producer), threading.Thread(target=consumer)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
Copy after login

3. Greenlets

Greenlets are coroutines, they allow you to pause and resume functions within a single thread. Because Greenlets are not bound by the GIL, they can achieve concurrency without lock contention:

import gevent

def task(num):
print(f"Greenlet {num}: {num * num}")

gevent.joinall([gevent.spawn(task, i) for i in range(4)])
Copy after login

4. C/C extension

For concurrent applications that require high performance,

C/C extensions can be written and integrated with Python. C/c Code is not affected by the GIL and therefore provides faster parallelism:

#include <Python.h>

static PyObject* py_task(PyObject* self, PyObject* args) {
int num;
if (!PyArg_ParseTuple(args, "i", &num)) {
return NULL;
}

// 执行任务
int result = num * num;

return Py_BuildValue("i", result);
}

static PyMethodDef methods[] = {
{"task", py_task, METH_VARARGS, "PerfORM a task in a C extension"},
{NULL, NULL, 0, NULL}
};

static PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"c_extension",
"C extension for parallel task execution",
-1,
methods
};

PyMODINIT_FUNC PyInit_c_extension(void) {
return PyModule_Create(&module);
}
Copy after login

Summarize

While Python’s GIL is critical for ensuring data integrity, it limits concurrency. By employing strategies such as multiprocessing, multithreading and queues, Greenlets, or C/C extensions, you can overcome the limitations of the GIL and unlock the full potential of Python concurrency. However, when using these technologies, their advantages, disadvantages, and suitability need to be carefully considered.

The above is the detailed content of Taming Python's GIL Beast: The Art of Mastering Concurrency. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

See all articles