


Getting started with the Python GIL: How to understand and use the global interpreter lock
What is GIL?
GIL is the abbreviation of global interpreter lock, which is an important concept of python interpreter. The GIL ensures that the Python interpreter can only execute one thread at a time. This means that at any time, only one thread can run Python bytecode. Other threads must wait for the GIL to be available before continuing execution.
How does GIL work?
GIL is a lock written in C language and is located in the Python interpreter. When a thread wants to execute Python bytecode, it must first obtain the GIL. If the GIL is already held by another thread, that thread must wait for the GIL to be available before continuing execution.
What impact does GIL have on Python programs?
The impact of GIL on Python programs is manifold. First, it prevents Python programs from taking full advantage of multi-core CPUs in a multi-threaded environment. This is because the GIL ensures that only one thread can execute Python bytecode at the same time, which means that other threads must wait for the GIL to be available before continuing execution.
Secondly, GIL makes Python programs prone to deadlocks under certain circumstances. For example, if one thread is holding the GIL and waiting for another thread to release a lock, and another thread is holding the lock and waiting for the GIL to be available, then the two threads will be stuck in a deadlock.
How to understand and use GIL?
In order to understand and use GIL, you first need to understand how GIL works. As mentioned above, the GIL is a lock written in C and located in the Python interpreter. When a thread wants to execute Python bytecode, it must first obtain the GIL. If the GIL is already held by another thread, that thread must wait for the GIL to be available before continuing execution.
Secondly, you need to understand the impact of GIL on Python programs. The impact of GIL on Python programs is manifold. First, it prevents Python programs from taking full advantage of multi-core CPUs in a multi-threaded environment. This is because the GIL ensures that only one thread can execute Python bytecode at the same time, which means that other threads must wait for the GIL to be available before continuing execution.
Secondly, GIL makes Python programs prone to deadlocks under certain circumstances. For example, if one thread is holding the GIL and waiting for another thread to release a lock, and another thread is holding the lock and waiting for the GIL to be available, then the two threads will be stuck in a deadlock.
In order to avoid the negative impact of GIL on Python programs, you can take the following measures:
- Try to avoid using multi-threading in Python programs.
- If you must use multi-threading, you should pay attention to avoid deadlock.
- You can use the GILStateSave() and GILStateRestore() functions to temporarily release GIL.
Demo code:
import threading def task(): print("This is a task.") def main(): threads = [] for i in range(10): thread = threading.Thread(target=task) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() if __name__ == "__main__": main()
This code creates 10 threads, each thread will execute the task function. The task function prints a message. The main function first creates 10 threads and then starts them. Finally, the main function waits for all threads to finish executing.
When running this code, GIL will ensure that only one thread executes the task function at the same time. This means that other threads must wait for the GIL to be available before they can continue execution.
GILStateSave() and GILStateRestore() functions
The GILStateSave() and GILStateRestore() functions can be used to temporarily release GIL. This is useful for certain operations that take a long time to perform, such as I/O operations. The GILStateSave() function can save the current GIL state, and the GILStateRestore() function can restore the saved GIL state.
The following example demonstrates how to use the GILStateSave() and GILStateRestore() functions:
import threading def task(): print("This is a task.") def main(): threads = [] for i in range(10): thread = threading.Thread(target=task) threads.append(thread) for thread in threads: thread.start() with GILStateSave(): # PerfORM an operation that does not require the GIL. for thread in threads: thread.join() if __name__ == "__main__": main()
This code is similar to the previous code, but it uses the GILStateSave() and GILStateRestore() functions to temporarily release the GIL. This allows operations that do not require the GIL to be performed while other threads are executing.
The above is the detailed content of Getting started with the Python GIL: How to understand and use the global interpreter lock. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
