


How to draw dynamic and interactive geographic charts with Python
How to draw dynamic and interactive geographic charts with Python
Introduction: In data visualization, geographic charts are a common and powerful tool that can help us Better understand spatial distribution patterns and trends in data sets. As a general-purpose programming language, Python has powerful data processing and visualization capabilities, and can also be used to draw dynamic and interactive geographical charts. This article will introduce how to use Python to draw dynamic and interactive geographical charts, and provide specific code examples.
1. Preparation
Before using Python to draw geographical charts, we need to install some necessary libraries. The most commonly used libraries are Matplotlib (for drawing static charts) and Plotly (for drawing dynamic and interactive charts). These libraries can be installed through the following command:
pip install matplotlib pip install plotly
2. Draw static geographical charts
First, let us learn how to use Python to draw static geographical charts. We will use the Matplotlib library and the Basemap module to achieve this goal. The following is a simple code example that demonstrates how to draw a world map and mark some points on the map:
import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap # 创建地图 map = Basemap(projection='mill', llcrnrlat=-90, urcrnrlat=90, llcrnrlon=-180, urcrnrlon=180, resolution='c') # 绘制海岸线 map.drawcoastlines() # 绘制国家边界 map.drawcountries() # 绘制州界线 map.drawstates() # 绘制城市 lons = [116.4074, 139.6917, -73.935242, -99.133178] lats = [39.9042, 35.6895, 40.712776, 19.432608] x, y = map(lons, lats) map.plot(x, y, 'bo', markersize=8) # 显示地图 plt.show()
In the above code, first we create a Basemap
object and Specifies the map's projection method, latitude and longitude range, and resolution. We then draw coastlines, country boundaries, and state lines using methods such as drawcoastlines()
, drawcountries()
, and drawstates()
. Finally, we plotted some points on the map using the plot()
method.
Run the above code and you will get a static world map with the locations of four cities marked on the map.
3. Draw dynamic and interactive geographic charts
If we need to draw dynamic and interactive geographic charts, we usually choose to use the Plotly library. The following is a sample code that demonstrates how to use Plotly to draw a dynamic world map and display the GDP per capita of each country on the map:
import plotly.express as px # 加载数据集 data = px.data.gapminder() # 创建动态地理图表 fig = px.scatter_geo(data, locations="iso_alpha", color="continent", hover_name="country", size="gdpPercap", animation_frame="year", projection="natural earth") # 显示地图 fig.show()
In the above code, we use px.data .gapminder()
Loads a sample data set, which contains per capita GDP data for various countries in different years. Then, we created a dynamic geographic chart using the px.scatter_geo()
method, where the locations
parameter is used to specify the ISO code of the country, and the color
parameter is used to Color distinction according to different continents, hover_name
parameter is used to display the country name when the mouse hovers, size
parameter is used to adjust the size of the point according to the size of GDP per capita, The animation_frame
parameter is used to specify a dynamic time series.
Run the above code, you will get a dynamic world map, and the per capita GDP of each country will be represented according to different colors and point sizes.
Conclusion:
This article introduces how to use Python to draw dynamic and interactive geographical charts. By using Matplotlib and Basemap libraries, we can draw static geographical charts and mark different points on the map. By using the Plotly library, we can draw dynamic and interactive geographical charts and display dynamic effects based on changes in data. Geographic charts, whether static or dynamic, can help us better understand the spatial distribution patterns and trends of data. I hope this article can help you use Python to draw geographical charts in data visualization.
The above is the detailed content of How to draw dynamic and interactive geographic charts with Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
