Home Backend Development Python Tutorial How to use the keras module for deep learning in Python 3.x

How to use the keras module for deep learning in Python 3.x

Jul 30, 2023 pm 03:21 PM
python deep learning keras

How to use the Keras module for deep learning in Python 3.x

Keras is a high-level neural network library for building and training deep learning models. It is based on Python and supports backends such as TensorFlow, Theano, and MxNet. Keras provides a simple and easy-to-use API, allowing us to quickly build various types of deep learning models, such as Multilayer Perceptron, Convolutional Neural Network and Recurrent Neural Network )wait.

This article will introduce how to use the Keras module for deep learning in the Python 3.x environment. We will first install Keras and its dependent libraries, and then learn how to build and train a simple neural network model through a simple example code.

1. Install Keras

Before we begin, we need to install Keras into our Python environment. Keras can be installed using pip through the following command:

pip install keras
Copy after login

2. Build a simple neural network model

Next, we will use Keras to build a simple neural network model to realize handwritten digit recognition Task. First, we need to import the necessary libraries:

import numpy as np
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import np_utils
Copy after login

Then, we need to load the MNIST data set, which contains 60,000 training samples and 10,000 test samples. Each sample is a 28x28 grayscale image, corresponding to a A number between [0, 9]. The following code can be used to load the dataset:

from keras.datasets import mnist

(X_train, Y_train), (X_test, Y_test) = mnist.load_data()
Copy after login

Next, we need to preprocess the data. Since the original image data is a 28x28 grayscale image, we need to flatten it into a 784-dimensional vector and normalize the input data to scale the pixel value from the range of [0, 255] to [0, 1 ] Within the range:

X_train = X_train.reshape(X_train.shape[0], 784).astype('float32') / 255
X_test = X_test.reshape(X_test.shape[0], 784).astype('float32') / 255
Copy after login

In order to be able to train the model, we also need to one-hot encode the label. Keras provides the np_utils.to_categorical() function to help us achieve this step:

Y_train = np_utils.to_categorical(Y_train, 10)
Y_test = np_utils.to_categorical(Y_test, 10)
Copy after login

Now, we can build a simple multilayer perceptron (Multilayer Perceptron) model. This model contains an input layer, two hidden layers and an output layer. You can use the Sequential() function to create a sequence model and the Dense() function to add layers:

model = Sequential()
model.add(Dense(units=512, input_dim=784, activation='relu'))
model.add(Dense(units=512, activation='relu'))
model.add(Dense(units=10, activation='softmax'))
Copy after login

After the model is built, we need to compile the model. You can use the compile() function to configure the model training process. Here, we can specify the loss function, optimizer and evaluation index:

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
Copy after login

3. Training model and prediction

After the model is compiled, we can use the fit() function to train the model. You can specify the training data, the number of training rounds, and the number of samples in each batch:

model.fit(X_train, Y_train, epochs=10, batch_size=128)
Copy after login

After the model training is completed, we can use the evaluate() function to evaluate the performance of the model on the test set:

loss, accuracy = model.evaluate(X_test, Y_test)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
Copy after login

Finally, we can use the predict_classes() function to predict the category of new samples:

predictions = model.predict_classes(X_test)
Copy after login

In this way, we have completed the construction and training process of a simple neural network model.

Summary:

This article introduces how to use the Keras module for deep learning in Python 3.x. We first installed Keras and its dependent libraries, and then learned how to build and train a simple neural network model through sample code. This is just an introduction to deep learning. Keras also provides more functions and models to meet different needs. I hope that readers can have a preliminary understanding of Keras and deep learning through the introduction of this article, and be able to use it in practical applications.

The above is the detailed content of How to use the keras module for deep learning in Python 3.x. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

How to run programs in terminal vscode How to run programs in terminal vscode Apr 15, 2025 pm 06:42 PM

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

See all articles