Detailed explanation of EM algorithm in Python
EM algorithm is a commonly used algorithm in statistical learning and is widely used in various fields. As an excellent programming language, Python has great advantages in implementing the EM algorithm. This article will introduce the EM algorithm in Python in detail.
First of all, we need to understand what the EM algorithm is. The EM algorithm is called Expectation-Maximization Algorithm. It is an iterative algorithm that is often used to solve parameter estimation problems containing hidden variables or missing data. The basic idea of EM algorithm is to iteratively solve the maximum likelihood estimation of parameters by continuously estimating unobserved hidden variables or missing data.
Implementing the EM algorithm in Python can be divided into the following four steps:
- E step
E step compares the observed data with the current The estimation of parameters computes the probability distribution of the latent variable. Essentially, the task of this step is to classify the sample data, cluster the observation data, and obtain the posterior distribution of the latent variables. In actual operations, you can use some clustering algorithms, such as K-means algorithm, GMM, etc.
- M step
The task of the M step is to re-estimate the parameters through the E-step level classification. At this point, we only need to calculate the maximum likelihood estimate of the parameters in the data distribution of each category and re-update the parameters. This process can be implemented using some optimization algorithms, such as gradient descent and conjugate gradient algorithms.
- Repeat steps 1 and 2
Next, we need to repeat steps 1 and 2 until the parameters converge and obtain parameters that satisfy the maximum likelihood estimation. This process is the iterative solution step in the EM algorithm.
- Calculate the likelihood function value
Finally, we need to calculate the likelihood function value. By continuously executing the EM algorithm, the parameters are updated so that the parameter estimates maximize the likelihood function. At this time, we can fix the parameters, calculate the likelihood function value on the current data set, and use it as the objective function of optimization.
Through the above four steps, we can implement the EM algorithm in Python.
The code is as follows:
import numpy as np import math class EM: def __init__(self, X, k, max_iter=100, eps=1e-6): self.X = X self.k = k self.max_iter = max_iter self.eps = eps def fit(self): n, d = self.X.shape # 随机初始化分布概率和均值与协方差矩阵 weight = np.random.random(self.k) weight = weight / weight.sum() mean = np.random.rand(self.k, d) cov = np.array([np.eye(d)] * self.k) llh = 1e-10 previous_llh = 0 for i in range(self.max_iter): if abs(llh - previous_llh) < self.eps: break previous_llh = llh # 计算隐变量的后验概率,即E步骤 gamma = np.zeros((n, self.k)) for j in range(self.k): gamma[:,j] = weight[j] * self.__normal_dist(self.X, mean[j], cov[j]) gamma = gamma / gamma.sum(axis=1, keepdims=True) # 更新参数,即M步骤 Nk = gamma.sum(axis=0) weight = Nk / n mean = gamma.T @ self.X / Nk.reshape(-1, 1) for j in range(self.k): x_mu = self.X - mean[j] gamma_diag = np.diag(gamma[:,j]) cov[j] = x_mu.T @ gamma_diag @ x_mu / Nk[j] # 计算似然函数值,即求解优化目标函数 llh = np.log(gamma @ weight).sum() return gamma def __normal_dist(self, x, mu, cov): n = x.shape[1] det = np.linalg.det(cov) inv = np.linalg.inv(cov) norm_const = 1.0 / (math.pow((2*np.pi),float(n)/2) * math.pow(det,1.0/2)) x_mu = x - mu exp_val = math.exp(-0.5 * (x_mu @ inv @ x_mu.T).diagonal()) return norm_const * exp_val
Among them,
X: observed data
k: number of categories
max_iter: maximum number of iteration steps
eps: Convergence threshold
fit() function: parameter estimation
__normal_dist(): Calculate multivariate Gaussian distribution function
Achieved through the above code, We can easily implement the EM algorithm in Python.
On top of this, the EM algorithm is also applied to various statistical learning problems, such as text clustering, image segmentation, semi-supervised learning, etc. Its flexibility and versatility have made it one of the classic algorithms in statistical learning. Especially for problems such as missing data and noisy data, the EM algorithm can be processed by estimating latent variables, which improves the robustness of the algorithm.
In short, Python is increasingly used in statistical learning, and more attention should be paid to the code implementation and model training of these classic algorithms. As one of the important algorithms, the EM algorithm also has a good optimization implementation in Python. Whether you are learning Python or statistical learning modeling, mastering the implementation of the EM algorithm is an urgent need.
The above is the detailed content of Detailed explanation of EM algorithm in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
