Home Backend Development Python Tutorial Tricky usage of @property decorator in Python (code example)

Tricky usage of @property decorator in Python (code example)

Nov 23, 2018 pm 04:45 PM
python

This article brings you the technical usage (code examples) of the @property decorator in Python. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.

@property decorator can turn a method into a property and call it. Let’s take a look at Python’s black magic @property decorator usage skills analysis

@ What are attributes used for? On the surface, it seems that a method is accessed as an attribute.

The above code

class Circle(object): 
  def __init__(self, radius): 
    self.radius = radius 
  
  @property 
  def area(self): 
    return 3.14 * self.radius ** 2 
  
c = Circle(4) 
print c.radius 
print c.area
Copy after login

As you can see, although the area is defined in the form of a method, after adding @property, it can be accessed directly c.area as a property.

Now the question comes. Every time c.area is called, it will be calculated once. It is a waste of CPU. How can it be calculated only once? This is the property of laziness.

class lazy(object): 
  def __init__(self, func): 
    self.func = func 
  
  def __get__(self, instance, cls): 
    val = self.func(instance) 
    setattr(instance, self.func.__name__, val) 
    return val 
  
class Circle(object): 
  def __init__(self, radius): 
    self.radius = radius 
  
  @lazy 
  def area(self): 
    print 'evalute' 
    return 3.14 * self.radius ** 2 
  
c = Circle(4) 
print c.radius 
print c.area 
print c.area 
print c.area
Copy after login

As you can see, 'evalute' is only output once, so you should have a good understanding of @Lazy's mechanism.

Here, the lazy class has a __get__ method, which indicates that it is a descriptor. When c.area is executed for the first time, due to order issues, it is first searched in Ç.__dict__. If it is not found, just Go to the class space to find it. In the class circle, there is the area() method, so it is intercepted by __get__.

In __get__, call the region() method of the instance to calculate the result, and dynamically add an attribute with the same name to the instance and assign the result to it, that is, add it to Ç.__ dict__.

When executing c.area again, first go to Ç.__ dict__ to find it, because it is already there at this time, so it will not go through the area () method and __get__.

Attention

Please pay attention to the following code scenarios:

Code snippet 1:

class Parrot(object): 
  def __init__(self): 
    self._voltage = 100000 
  
  @property 
  def voltage(self): 
    """Get the current voltage.""" 
    return self._voltage 
  
if __name__ == "__main__": 
  # instance 
  p = Parrot() 
  # similarly invoke "getter" via @property 
  print p.voltage 
  # update, similarly invoke "setter" 
  p.voltage = 12
Copy after login

Code snippet 2:

class Parrot: 
  def __init__(self): 
    self._voltage = 100000 
  
  @property 
  def voltage(self): 
    """Get the current voltage.""" 
    return self._voltage 
  
if __name__ == "__main__": 
  # instance 
  p = Parrot() 
  # similarly invoke "getter" via @property 
  print p.voltage 
  # update, similarly invoke "setter" 
  p.voltage = 12
Copy after login

Code 1 ,The difference between 2 is

class Parrot (object):

Under python2, run the test separately

Fragment 1: An expected error message AttributeError: Unable to be prompted Set properties

Fragment 2: Correct operation

Refer to the python2 documentation. @property will provide a ready-only attribute. The above code does not provide the corresponding @voltage.setter. It stands to reason that the code in Fragment 2 will Prompt running error, in the python2 documentation, we can find the following information:

BIF:

property([fget[,fset[,fdel[,doc]]]])

Returns the attribute properties of the new style class (classes derived from Object).

It turns out that under python2, the built-in type object is not the default base class. If there is no clear explanation when defining the class (code snippet 2), the Parrot we defined (code snippet 2) will not inherit Object

The object class just provides the @property function we need. We can find the following information in the document:

New style lesson

Any class that inherits from object . This includes all built-in types such as list and dict. Only new-style classes can use Python's newer, generic features such as __slots__, descriptors, attributes and __getattribute__().

At the same time, we can also verify through the following method

class A: 
  pass 
>>type(A) 
<type &#39;classobj&#39;>
Copy after login
class A(object): 
  pass 
>>type(A) 
<type &#39;type&#39;>
Copy after login

From the returned , we can see that is the object type we need (python 3.0 uses the object class as the default base class, so all will return )

In order to consider the compatibility of the python version of the code during the transition period Question, I think when defining a class file, you should explicitly define the object as a good habit

The final code will be as follows:

class Parrot(object): 
  def __init__(self): 
    self._voltage = 100000 
  @property 
  def voltage(self): 
    """Get the current voltage.""" 
    return self._voltage 
  @voltage.setter 
  def voltage(self, new_value): 
    self._voltage = new_value 
  
if __name__ == "__main__": 
  # instance 
  p = Parrot() 
  # similarly invoke "getter" via @property 
  print p.voltage 
  # update, similarly invoke "setter" 
  p.voltage = 12
Copy after login

The above is the detailed content of Tricky usage of @property decorator in Python (code example). For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

How to run programs in terminal vscode How to run programs in terminal vscode Apr 15, 2025 pm 06:42 PM

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Is the vscode extension malicious? Is the vscode extension malicious? Apr 15, 2025 pm 07:57 PM

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

See all articles