


Things to pay attention to when using locks in Python threads
The content of this article is about what you should pay attention to when using locks in Python threads. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
When using lock primitives such as Lock, RLock, and Semphore, you must be more careful. The incorrect use of locks can easily lead to deadlock or mutual competition. Code that relies on locks should ensure that the lock can be released normally when an exception occurs.
Typical code is as follows:
try: lock.acquire() #关键部分 ... finally: lock.release()
In addition, all types of locks also support context management protocols (more concise to write):
The with statement automatically acquires the lock and controls it The lock is automatically released when the stream leaves the context.
with lock: #关键部分 ...
In addition, when writing code, you should generally avoid acquiring multiple locks at the same time. For example, you should try to avoid the following:
This notification is very uniform and leads to mysterious deadlocks in the application, although it can be solved with the centralized strategy Avoid situations like this (like hierarchical locking), but it's best to avoid such nested locks when writing your code.
with lock_A: #关键部分 ... with lock_B: #B的关键部分 ...
Although it is possible to write very traditional multithreaded programs in Python using various combinations of locks and synchronization primitives, there is one preferred way of programming that trumps all others: multithreaded programs Organized into a collection of multiple independent tasks, these tasks communicate through message queues, such as the queue module to be discussed below.
Related recommendations:
Examples to explain the use of thread locks in Python programming
How to use python thread locks (examples Analysis)
The above is the detailed content of Things to pay attention to when using locks in Python threads. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
