


Detailed explanation of the usage and working principle of super() function in python
The definition of object methods in Python is very weird. The first parameter is generally named self (equivalent to this in other languages), which is used to pass the object itself. It does not need to be passed explicitly when calling, the system will automatically transfer.
The protagonist we introduce today is super(). Super() is very commonly used in class inheritance. It solves some problems of subclasses calling parent class methods. When the parent class is called multiple times, it is only executed once. , optimized the execution logic, let’s take a look in detail below.
Give an example:
class Foo: def bar(self, message): print(message)
>>> Foo().bar("Hello, Python.") Hello, Python.
When there is an inheritance relationship, sometimes it is necessary to call the method of the parent class in the subclass. At this time, the simplest way is to convert the object call into a class When calling, it should be noted that the self parameter needs to be passed explicitly at this time, for example:
class FooParent: def bar(self, message): print(message) class FooChild(FooParent): def bar(self, message): FooParent.bar(self, message)
>>> FooChild().bar("Hello, Python.") Hello, Python.
This has some disadvantages. For example, if the name of the parent class is modified, multiple modifications will be involved in the subclass. In addition, Python is a language that allows multiple inheritance. The method shown above needs to be written multiple times when there is multiple inheritance, which is cumbersome. In order to solve these problems, Python introduced the super() mechanism. The example code is as follows:
class FooParent: def bar(self, message): print(message) class FooChild(FooParent): def bar(self, message): super(FooChild, self).bar(message)
>>> FooChild().bar("Hello, Python.") Hello, Python.
On the surface, the super(FooChild, self).bar(message) method and the FooParent.bar(self, message) method are The results are consistent. In fact, the internal processing mechanisms of the two methods are very different. When multiple inheritance is involved, there will be obvious differences. Let’s give an example directly:
Code 1:
class A: def __init__(self): print("Enter A") print("Leave A") class B(A): def __init__(self): print("Enter B") A.__init__(self) print("Leave B") class C(A): def __init__(self): print("Enter C") A.__init__(self) print("Leave C") class D(A): def __init__(self): print("Enter D") A.__init__(self) print("Leave D") class E(B, C, D): def __init__(self): print("Enter E") B.__init__(self) C.__init__(self) D.__init__(self) print("Leave E") E()
Result:
Enter E
Enter B
Enter A
Leave A
Leave B
Enter C
Enter A
Leave A
Leave C
Enter D
Enter A
Leave A
Leave D
Leave E
The execution sequence is easy to understand. The only thing that needs attention is that the public parent class A is executed multiple times.
Code 2:
class A: def __init__(self): print("Enter A") print("Leave A") class B(A): def __init__(self): print("Enter B") super(B, self).__init__() print("Leave B") class C(A): def __init__(self): print("Enter C") super(C, self).__init__() print("Leave C") class D(A): def __init__(self): print("Enter D") super(D, self).__init__() print("Leave D") class E(B, C, D): def __init__(self): print("Enter E") super(E, self).__init__() print("Leave E") E()
Result:
Enter E
Enter B
Enter C
Enter D
Enter A
Leave A
Leave D
Leave C
Leave B
Leave E
can be guaranteed in the super mechanism The public parent class is only executed once. As for the order of execution, it is in accordance with MRO (Method Resolution Order): method resolution order. This MRO mechanism will be introduced in detail later.
The above is the detailed content of Detailed explanation of the usage and working principle of super() function in python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
