Table of Contents
A Deep Dive into the HybridSimilarity Algorithm
Core Components
Detailed Breakdown
1. Model Setup
2. Feature Extraction
3. Neural Network Fusion
Practical Application
Conclusion
Home Backend Development Python Tutorial HybridSimilarity Algorithm

HybridSimilarity Algorithm

Jan 21, 2025 pm 10:17 PM

HybridSimilarity Algorithm

A Deep Dive into the HybridSimilarity Algorithm

This article explores the HybridSimilarity algorithm, a sophisticated neural network designed to assess the similarity between text pairs. This hybrid model cleverly integrates lexical, phonetic, semantic, and syntactic comparisons for a comprehensive similarity score.

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Copy after login
Copy after login

Core Components

The HybridSimilarity model relies on these key components:

  • Sentence Transformers: Utilizes pre-trained transformer models for semantic embedding generation.
  • Levenshtein Distance: Calculates lexical similarity based on character-level edits.
  • Metaphone: Determines phonetic similarity.
  • TF-IDF and Truncated SVD: Applies Latent Semantic Analysis (LSA) for syntactic similarity.
  • PyTorch: Provides the framework for building the custom neural network with attention mechanisms and fully connected layers.

Detailed Breakdown

1. Model Setup

The HybridSimilarity class, extending nn.Module, initializes:

  • A BERT-based sentence embedding model (all-MiniLM-L6-v2).
  • A TF-IDF vectorizer.
  • A multi-head attention mechanism.
  • A fully connected network to aggregate features and generate the final similarity score.
self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Copy after login
Copy after login
2. Feature Extraction

The _extract_features method computes several similarity features:

  • Lexical Similarity:
    • Levenshtein ratio: Quantifies the number of edits (insertions, deletions, substitutions) to transform one text into another.
    • Jaccard index: Measures the overlap of unique words in both texts.
features['levenshtein'] = levenshtein_ratio(text1, text2)
features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))
Copy after login
  • Phonetic Similarity:
    • Metaphone encoding: Compares phonetic representations.
features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0
Copy after login
  • Semantic Similarity:
    • BERT embeddings are generated, and cosine similarity is calculated.
emb1 = self.bert.encode(text1, convert_to_tensor=True)
emb2 = self.bert.encode(text2, convert_to_tensor=True)
features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()
Copy after login
  • Syntactic Similarity:
    • TF-IDF vectorizes the text, and LSA is applied using TruncatedSVD.
tfidf_matrix = self.tfidf.fit_transform([text1, text2])
svd = TruncatedSVD(n_components=1)
lsa = svd.fit_transform(tfidf_matrix)
features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]
Copy after login
  • Attention-based Feature:
    • Multi-head attention processes the embeddings, and the average attention score is used.
att_output, _ = self.attention(
    emb1.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0),
    emb2.unsqueeze(0).unsqueeze(0)
)
features['attention_score'] = att_output.mean().item()
Copy after login
3. Neural Network Fusion

The extracted features are combined and fed into a fully connected neural network. This network outputs a similarity score (0-1).

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import TruncatedSVD
from sentence_transformers import SentenceTransformer
from Levenshtein import ratio as levenshtein_ratio
from phonetics import metaphone
import torch
import torch.nn as nn

class HybridSimilarity(nn.Module):
    def __init__(self):
        super().__init__()
        self.bert = SentenceTransformer('all-MiniLM-L6-v2')
        self.tfidf = TfidfVectorizer()
        self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
        self.fc = nn.Sequential(
            nn.Linear(1152, 256),
            nn.ReLU(),
            nn.LayerNorm(256),
            nn.Linear(256, 1),
            nn.Sigmoid()
        )

    def _extract_features(self, text1, text2):
        # Feature Extraction
        features = {}

        # Lexical Analysis
        features['levenshtein'] = levenshtein_ratio(text1, text2)
        features['jaccard'] = len(set(text1.split()) & set(text2.split())) / len(set(text1.split()) | set(text2.split()))

        # Phonetic Analysis
        features['metaphone'] = 1.0 if metaphone(text1) == metaphone(text2) else 0.0

        # Semantic Analysis (BERT)
        emb1 = self.bert.encode(text1, convert_to_tensor=True)
        emb2 = self.bert.encode(text2, convert_to_tensor=True)
        features['semantic_cosine'] = nn.CosineSimilarity()(emb1, emb2).item()

        # Syntactic Analysis (LSA-TFIDF)
        tfidf_matrix = self.tfidf.fit_transform([text1, text2])
        svd = TruncatedSVD(n_components=1)
        lsa = svd.fit_transform(tfidf_matrix)
        features['lsa_cosine'] = np.dot(lsa[0], lsa[1].T)[0][0]

        # Attention Mechanism
        att_output, _ = self.attention(
            emb1.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0), 
            emb2.unsqueeze(0).unsqueeze(0)
        )
        features['attention_score'] = att_output.mean().item()

        return torch.tensor(list(features.values())).unsqueeze(0)

    def forward(self, text1, text2):
        features = self._extract_features(text1, text2)
        return self.fc(features).item()

def similarity_coefficient(text1, text2):
    model = HybridSimilarity()
    return model(text1, text2)
Copy after login
Copy after login

Practical Application

The similarity_coefficient function initializes the model and computes the similarity between two input texts.

self.bert = SentenceTransformer('all-MiniLM-L6-v2')
self.tfidf = TfidfVectorizer()
self.attention = nn.MultiheadAttention(embed_dim=384, num_heads=4)
self.fc = nn.Sequential(
    nn.Linear(1152, 256),
    nn.ReLU(),
    nn.LayerNorm(256),
    nn.Linear(256, 1),
    nn.Sigmoid()
)
Copy after login
Copy after login

This returns a float between 0 and 1, representing the similarity.

Conclusion

The HybridSimilarity algorithm offers a robust approach to text similarity by integrating various aspects of text comparison. Its combination of lexical, phonetic, semantic, and syntactic analysis allows for a more comprehensive and nuanced understanding of text similarity, making it suitable for various applications, including duplicate detection, text clustering, and information retrieval.

The above is the detailed content of HybridSimilarity Algorithm. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

See all articles