安装ElasticSearch搜索工具并配置Python驱动的方法
ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是第二流行的企业搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。
我们建立一个网站或应用程序,并要添加搜索功能,令我们受打击的是:搜索工作是很难的。我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解决所有这些问题和更多的问题。
Elasticsearch 是开源搜索平台的新成员,实时数据分析的神器,发展迅猛,基于 Lucene、RESTful、分布式、面向云计算设计、实时搜索、全文搜索、稳定、高可靠、可扩展、安装+使用方便,介绍都说的很好听,好不好用拿出来遛一遛。
做了个简单测试,在两台完全一样的虚拟机上,2000万条左右数据,Elasticsearch 插入数据速度比 MongoDB 慢很多(可以忍受),但是搜索/查询速度快10倍以上,这只是单机情况,多机集群情况下 Elasticsearch 表现更好一些。以下安装步骤在 Ubuntu Server 14.04 LTS 上完成。
安装 Elasticsearch
升级系统后安装 Oracle Java 7,既然 Elasticsearch 官方推荐使用 Oracle JDK 7 就不要尝试 JDK 8 和 OpenJDK 了:
$ sudo apt-get update $ sudo apt-get upgrade $ sudo apt-get install software-properties-common $ sudo add-apt-repository ppa:webupd8team/java $ sudo apt-get update $ sudo apt-get install oracle-java7-installer
加入 Elasticsearch 官方源后安装 elasticsearch:
$ wget -O - http://packages.elasticsearch.org/GPG-KEY-elasticsearch | apt-key add - $ sudo echo "deb http://packages.elasticsearch.org/elasticsearch/1.1/debian stable main" >> /etc/apt/sources.list $ sudo apt-get update $ sudo apt-get install elasticsearch
加入到系统启动文件并启动 elasticsearch 服务,用 curl 测试一下安装是否成功:
$ sudo update-rc.d elasticsearch defaults 95 1 $ sudo /etc/init.d/elasticsearch start $ curl -X GET 'http://localhost:9200' { "status" : 200, "name" : "Fer-de-Lance", "version" : { "number" : "1.1.1", "build_hash" : "f1585f096d3f3985e73456debdc1a0745f512bbc", "build_timestamp" : "2014-04-16T14:27:12Z", "build_snapshot" : false, "lucene_version" : "4.7" }, "tagline" : "You Know, for Search" }
Elasticsearch 的集群和数据管理界面 Marvel 非常赞,可惜只对开发环境免费,如果这个工具也免费就无敌了,安装很简单,完成后重启服务访问 http://192.168.2.172:9200/_plugin/marvel/ 就可以看到界面:
$ sudo /usr/share/elasticsearch/bin/plugin -i elasticsearch/marvel/latest $ sudo /etc/init.d/elasticsearch restart * Stopping Elasticsearch Server [ OK ] * Starting Elasticsearch Server [ OK ]
安装 Python 客户端驱动
和 MongoDB 一样,我们一般用程序和 Elasticsearch 交互,Elasticsearch 也支持多种语言的客户端驱动,这里仅安装 Python 驱动,其他语言可以参考官方文档。
$ sudo apt-get install python-pip $ sudo pip install elasticsearch
写个简单程序把 gene_info.txt 的数据导入到 Elasticsearch:
#!/usr/bin/python # -*- coding: UTF-8 -*- import os, os.path, sys, re import csv, time, string from datetime import datetime from elasticsearch import Elasticsearch def import_to_db(): data = csv.reader(open('gene_info.txt', 'rb'), delimiter='\t') data.next() es = Elasticsearch() for row in data: doc = { 'tax_id': row[0], 'GeneID': row[1], 'Symbol': row[2], 'LocusTag': row[3], 'Synonyms': row[4], 'dbXrefs': row[5], 'chromosome': row[6], 'map_location': row[7], 'description': row[8], 'type_of_gene': row[9], 'Symbol_from_nomenclature_authority': row[10], 'Full_name_from_nomenclature_authority': row[11], 'Nomenclature_status': row[12], 'Other_designations': row[13], 'Modification_date': row[14] } res = es.index(index="gene", doc_type='gene_info', body=doc) def main(): import_to_db() if __name__ == "__main__": main()
Kibana 是一个功能强大的数据显示客户端,通过插件方式和 Elasticsearch 集成在一起,安装很容易,下载解压就可以了,然后重启 Elasticsearch 服务访问 http://192.168.2.172:9200/_plugin/kibana/ 就能看到界面:
$ wget https://download.elasticsearch.org/kibana/kibana/kibana-3.0.1.tar.gz $ tar zxvf kibana-3.0.1.tar.gz $ sudo mv kibana-3.0.1 /usr/share/elasticsearch/plugins/_site $ sudo /etc/init.d/elasticsearch restart

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
