详解Python使用simplejson模块解析JSON的方法
1,Json模块介绍
JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式。易于人阅读和编写。同时也易于机器解析和生成。它基于JavaScript Programming Language, Standard ECMA-262 3rd Edition - December 1999的一个子集。JSON采用完全独立于语言的文本格式,但是也使用了类似于C语言家族的习惯(包括C, C++, C#, Java, JavaScript, Perl, Python等)。这些特性使JSON成为理想的数据交换语言。
2,Json的格式
2.1,对象:
{name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} { 属性 : 值 , 属性 : 值 , 属性 : 值 }
2.2,数组:
是有顺序的值的集合。一个数组开始于"[",结束于"]",值之间用","分隔。
[ {name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, {name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"}, {name:"Peggy",email:"peggy@gmail.com",homepage:"http://www.jb51.net"} ]
3,Json的导入导出
这里的write/dump的含义是将Json对象输入到一个python_object中,如果python_object是文件,则dump到文件中;如果是对象,则dump到内存中。这是序列化。
3.1,读取Json文件
import simplejson as json f = file('table.json') source = f.read() target = json.JSONDecoder().decode(source) print target import simplejson as json jsonobject = json.load(file('table.json')) print jsonobject
3.2,显示Json文件
为了显示Json格式好看,原来的Json文件:
[admin@r42h06016.xy2.aliyun.com]$python readJson.py [{'Query': 'desc zt1;', 'Message': '{"DescibeTableWithPartSpec": "false", "GetTableMetaString":"{\\"tableName\\":\\"zt1\\",\\"owner\\":\\"1365937150772213\\",\\"createTime\\":1346218114,\\"lastModifiedTime\\":0,\\"columns\\":[{\\"name\\":\\"a\\",\\"type\\":\\"string\\"},{\\"name\\":\\"b\\",\\"type\\":\\"string\\"}],\\"partitionKeys\\":[{\\"name\\":\\"pt\\",\\"type\\":\\"string\\"}]}"}', 'QueryID': '', 'Result': 'OK'}]
执行文件:
import simplejson as json jsonobject = json.load(file('table.json')) print json.dumps(jsonobject,sort_keys=True,indent=4)
显示:
[admin@r42h06016.xy2.aliyun.com]$python readJson.py [ { "Message": "{\"DescibeTableWithPartSpec\": \"false\", \"GetTableMetaString\":\"{\\\"tableName\\\":\\\"zt1\\\",\\\"owner\\\":\\\"1365937150772213\\\",\\\"createTime\\\":1346218114,\\\"lastModifiedTime\\\":0,\\\"columns\\\":[{\\\"name\\\":\\\"a\\\",\\\"type\\\":\\\"string\\\"},{\\\"name\\\":\\\"b\\\",\\\"type\\\":\\\"string\\\"}],\\\"partitionKeys\\\":[{\\\"name\\\":\\\"pt\\\",\\\"type\\\":\\\"string\\\"}]}\"}", "Query": "desc zt1;", "QueryID": "", "Result": "OK" } ]
3.3,json模块示例:
import json # Converting Python to JSON json_object = json.write( python_object ) # Converting JSON to Python python_object = json.read( json_object )
3.4,simplejson模块 示例:
import simplejson # Converting Python to JSON json_object = simplejson.dumps( python_object ) # Converting JSON to Python python_object = simplejson.loads( json_object )
其中的json_object也可以是文件名比如file(“tmp/table.json”)
4,Json数据的解析
假设对于data.json文件如下:
#test.py import simplejson as json ddata = json.loads(file("data.json")) print ddata print type(ddata)#<type 'dict'>
其次,我们以读字典中key 为”data”对应的键值
>>> ddata['data'] //查看字典的方法! >>>type(ddata['data']) <type 'list'>
发现ddata[‘data']是一个列表,列表就要用序号来查询
>>> ddata['data'][0] //查看列表的方法! >>> type(ddata['data'][0]) <type 'dict'>
ddata[‘data']列表的0号元素是个字典。。
好,那我们查查key为idc的键值是多少
>>> ddata['data'][0]['idc'] //查看字典的方法! >>> ddata['data'][0]['idc'] //查看字典的方法! '\xe6\x9d\xad\xe5\xb7\x9e\xe5\xbe\xb7\xe8\x83\x9c\xe6\x9c\xba\xe6\x88\xbf' >>> print ddata['data'][0]['idc'] 杭州德胜机房
5.一些性能讨论
简单测试了一下,如果用JSON,也就是python2.6以上自带的json处理库,效率还算可以:
1K的数据,2.9GHz的CPU,单核下每秒能dump:36898次。大约是pyamf的5倍。但数据量较大,约为pyamf的1.67倍(1101/656)。
start_time: 1370747463.77 loop_num: 36898 end_time: 1370747464.78
再看看simplejson,没有安装C扩展的情况下:
simplejson,没有安装C扩展,跑出的结果让我惊讶:
start_time: 1370748132.87 loop_num: 1361 end_time: 1370748133.88
效率如此之低下。
下面是测试代码:
#! /usr/bin/env python #coding=utf-8 import time import json test_data = { 'baihe': { 'name': unicode('百合', 'utf-8'), 'say': unicode('清新,淡雅,花香', 'utf-8'), 'grow_time': 0.5, 'fruit_time': 0.5, 'super_time': 0.5, 'total_time': 1, 'buy':{'gold':2, } , 'harvest_fruit': 1, 'harvest_super': 1, 'sale': 1, 'level_need': 0, 'experience' : 2, 'exp_fruit': 1, 'exp_super': 1, 'used': True, }, '1':{ 'interval' : 0.3, 'probability' : { '98': {'chips' : (5, 25), }, '2' : {'gem' : (1,1), }, }, }, '2':{ 'unlock' : {'chips':1000, 'FC':10,}, 'interval' : 12, 'probability' : { '70': {'chips' : (120, 250), }, '20': {'gem' : (1,1), }, '10': {'gem' : (2,2), }, }, }, 'one':{ '10,5' :{'id':'m01', 'Y':1, 'msg':u'在罐子里发现了一个银币!',}, '3,7' :{'id':'m02', 'Y':10,'msg':u'发现了十个银币!好大一笔钱!',}, '15,5' :{'id':'m03', 'Y':2, 'msg':u'一只老鼠跑了过去',}, '7,4' :{'id':'m04', 'Y':4, 'msg':u'发现了四个生锈的银币……',}, '2,12' :{'id':'m05', 'Y':6, 'msg':u'六个闪亮的银币!',}, }, } start_time = time.time() print "start_time:", start_time j = 1 while True: j += 1 a = json.dumps(test_data) data_length = len(a) end_time = time.time() if end_time - start_time >= 1 : break print "loop_num:", j print "end_time: ",end_time print data_length ,a
总结:python自带的json,性能可以接受。simplejson,如果没有C扩展加速,效率极其低下。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
