Home Database Mysql Tutorial 在Oracle中进行大小写不敏感的查询

在Oracle中进行大小写不敏感的查询

Jun 07, 2016 pm 05:20 PM

在Oracle中,命令和对象名称都是大小写不敏感的,因为Oracle在处理语句时,将所有的名称和命令全部转化为大写。但是对于字符串中

在Oracle中,命令和对象名称都是大小写不敏感的,因为Oracle在处理语句时,将所有的名称和命令全部转化为大写。
但是对于字符串中的字符,无论是比较还是排序,都是大小写敏感的。这在Oracle是默认方式,但不是唯一的方式。

下面看一个简单的例子:
SQL> CREATE TABLE T (NAME VARCHAR2(30));
表已创建。
SQL> INSERT INTO T VALUES ('A');
已创建 1 行。
SQL> INSERT INTO T VALUES ('a');
已创建 1 行。
SQL> INSERT INTO T VALUES ('B');
已创建 1 行。
SQL> COMMIT;
提交完成。
SQL> CREATE INDEX IND_T_NAME ON T(NAME);
索引已创建。
看一下默认情况下的排序和查询结果:
SQL> SELECT * FROM T ORDER BY NAME;
NAME
------------------------------
A
B
a
SQL> SELECT * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
这是最正常不过的结果了,下面修改会话默认的排序方式:
SQL> ALTER SESSION SET NLS_SORT = BINARY_CI;
会话已更改。
SQL> SELECT * FROM T ORDER BY NAME;
NAME
------------------------------
A
a
B
SQL> SELECT * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
可以看到,通过设置排序方法为BINARY_CI,已经实现了对排序的大小写不敏感,但是查询语句中仍然是大小写敏感的,下面进一步修改比较方式:
SQL> ALTER SESSION SET NLS_COMP = LINGUISTIC;
会话已更改。
SQL> SELECT * FROM T ORDER BY NAME;
NAME
------------------------------
A
a
B
SQL> SELECT * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
a
现在已经达到了大小写不敏感查询的目的了,这是由于设置比较方式是基于语义的,而不是基于二进制的,而语言方式下A和a是没有区别的。
虽然目的达到了,但是还是要说明一下,,这里虽然实现了对大小写不敏感的查询,但是这个结果的实现与表面看到的现象并不完全相同。
从查询语句上看,似乎只是对NAME进行一下判断就可以了,并未对列进行任何的操作,而实际上并非如此,下面看看这种情况下的执行计划:
SQL> SET AUTOT ON EXP
SQL> SELECT * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
a
执行计划
----------------------------------------------------------
Plan hash value: 1601196873
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 17 | 3 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T | 1 | 17 | 3 (0)| 00:00:01 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(NLSSORT("NAME",'nls_sort=''BINARY_CI''')=HEXTORAW('6100')
)
Note
-----
- dynamic sampling used for this statement
Oracle居然对列进行了操作,将NAME进行了NLSSORT操作,然后判断是否与目标值进行判断。不过Oracle也没有其他的好方法进行处理,对等号右边的常量进行转换固然代价较低,但是SQL的判断条件就由等于变成了IN,这种转换恐怕变化更大。而且还要找到所有其他所有可能转换为目标值的常量,这个操作要比对列进行转换复杂得多。
不过这种方法就存在一个问题,就是Oracle无法使用索引了,一方面是由于对列进行了操作,另一方面是由于Oracle的索引是按照BINARY方式编码存储的。因此这种查询会采用全表扫描的方式。
SQL> SELECT /*+ INDEX(T IND_T_NAME) */ * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
a
执行计划
----------------------------------------------------------
Plan hash value: 1601196873
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 17 | 3 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| T | 1 | 17 | 3 (0)| 00:00:01 |
--------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter(NLSSORT("NAME",'nls_sort=''BINARY_CI''')=HEXTORAW('6100')
)
Note
-----
- dynamic sampling used for this statement
这个情况,可以考虑建立一个函数索引来解决问题:
SQL> CREATE INDEX IND_T_L_NAME ON T(NLSSORT(NAME, 'NLS_SORT=BINARY_CI'));
索引已创建。
SQL> SELECT * FROM T WHERE NAME = 'A';
NAME
------------------------------
A
a
执行计划
----------------------------------------------------------
Plan hash value: 242883967
--------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 17 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| T | 1 | 17 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IND_T_L_NAME | 1 | | 1 (0)| 00:00:01 |
--------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access(NLSSORT("NAME",'nls_sort=''BINARY_CI''')=HEXTORAW('6100') )
Note
-----
- dynamic sampling used for this statement

linux

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

MySQL: Simple Concepts for Easy Learning MySQL: Simple Concepts for Easy Learning Apr 10, 2025 am 09:29 AM

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

The relationship between mysql user and database The relationship between mysql user and database Apr 08, 2025 pm 07:15 PM

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

Can mysql and mariadb coexist Can mysql and mariadb coexist Apr 08, 2025 pm 02:27 PM

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Apr 02, 2025 pm 07:05 PM

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

See all articles