Ubuntu系统中Qt连PostgreSQL的问题解决
问题是这样的: 在Windows系统下, Qt连接数据库Postgresql是需要自己去Qt源码里手动编译Postgresql驱动的, 然后把生成的动态连接库
昨天遇到一个问题, 折腾了一天都没解决, 今天突然间就解决了。
问题是这样的: 在Windows系统下, Qt连接数据库PostgreSQL是需要自己去Qt源码里手动编译PostgreSQL驱动的, 然后把生成的动态连接库放到Qt的安装目录里面的插件目录plugins中. 当我跑到Ubuntu系统下去做时, 发现在我的qt4.8.6的目录/opt/qt4.8.6/plugins/sqldrivers下是有libqsqlite.so和libqsqlpsql.so的, 也就是说qt已经自带了PostgreSQL的驱动了. 然后我直接编译完项目, 运行时居然提示没有找到数据库驱动, 而且不但psql的驱动找不到, 连基本的sqlite都没找到。
我这就很郁闷了, 明明驱动就在那里, 为什么就说没有呢?
我系统里面还装了qt5.2.1, 我便试着在5.2.1上面重新编译运行, 发现只找到了sqlite的驱动, 没有找到psql的驱动. 我跑去它的plugins/sqldrivers目录下, 发现确实只有libsqlite.so.
那么, 问题来了, qt5.2.1找到了sqlite的驱动, 为什么qt4.8.6就没有找到了?
我一直认为是编译的时候链接的某路径有问题, 但一直不得其解.
直到今天, 我重写开启qtcreator, 直接运行程序, 发现居然连接上数据库了! 然后我重写编译, 又说没有发现数据库驱动!这是为什么呢? 后来又折腾了一会才发现, 我是直接在qt4.8.6套件下编译, 然后在qt5.2.1套件下执行, 然后就链接成功了. 然后我又试着在终端直接运行qt4.8.6构建的执行文件, 结果也链接成功了.
原来是运行时的动态链接库问题, 而不是编译的问题!
原本在Qt的Run Environment中, qt4.8.6的LD_LIBRARY_PATH自动设置为/opt/qt4.8.6/lib, 改为/opt/qt4.8.6就好了. 需要的动态库其实是在/opt/qt4.8.6/plugins/sqldrivers里面.
而在qt5.2.1的运行环境能运行是因为, qt5.2.1的LD_LIBRARY_PATH自动设置为/usr/lib/x86_64-linux-gnu, 在这个目录下有另外一个qt4的目录, 在它的目录下面有那个libsqlite.so.
好傻的问题, 我居然这么久才发现.
------------------------------------华丽丽的分割线------------------------------------
CentOS 6.3环境下yum安装PostgreSQL 9.3
PostgreSQL缓存详述
Windows平台编译 PostgreSQL
Ubuntu下LAPP(Linux+Apache+PostgreSQL+PHP)环境的配置与安装
Ubuntu上的phppgAdmin安装及配置
CentOS平台下安装PostgreSQL9.3
PostgreSQL配置Streaming Replication集群
如何在CentOS 7/6.5/6.4 下安装PostgreSQL 9.3 与 phpPgAdmin
------------------------------------华丽丽的分割线------------------------------------
PostgreSQL 的详细介绍:请点这里
PostgreSQL 的下载地址:请点这里
本文永久更新链接地址:
,
Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
