首页 > Python教程 > 正文

浅谈Python NLP入门

原创 2017-12-26 0 551
本文主要介绍了Python NLP入门教程,Python自然语言处理(NLP),使用Python的NLTK库。NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库。小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧,希望能帮助到大家。

什么是NLP?

简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务。

这里讨论一些自然语言处理(NLP)的实际应用例子,如语音识别、语音翻译、理解完整的句子、理解匹配词的同义词,以及生成语法正确完整句子和段落。

这并不是NLP能做的所有事情。

NLP实现

搜索引擎: 比如谷歌,Yahoo等。谷歌搜索引擎知道你是一个技术人员,所以它显示与技术相关的结果;

社交网站推送:比如Facebook News Feed。如果News Feed算法知道你的兴趣是自然语言处理,就会显示相关的广告和帖子。

语音引擎:比如Apple的Siri。

垃圾邮件过滤:如谷歌垃圾邮件过滤器。和普通垃圾邮件过滤不同,它通过了解邮件内容里面的的深层意义,来判断是不是垃圾邮件。

NLP库

下面是一些开源的自然语言处理库(NLP):

  1. Natural language toolkit (NLTK);

  2. Apache OpenNLP;

  3. Stanford NLP suite;

  4. Gate NLP library

其中自然语言工具包(NLTK)是最受欢迎的自然语言处理库(NLP),它是用Python编写的,而且背后有非常强大的社区支持。

NLTK也很容易上手,实际上,它是最简单的自然语言处理(NLP)库。

在这个NLP教程中,我们将使用Python NLTK库。

安装 NLTK

如果您使用的是Windows/Linux/Mac,您可以使用pip安装NLTK:


pip install nltk

打开python终端导入NLTK检查NLTK是否正确安装:


import nltk

如果一切顺利,这意味着您已经成功地安装了NLTK库。首次安装了NLTK,需要通过运行以下代码来安装NLTK扩展包:


import nltk
nltk.download()

这将弹出NLTK 下载窗口来选择需要安装哪些包:

您可以安装所有的包,因为它们的大小都很小,所以没有什么问题。

使用Python Tokenize文本

首先,我们将抓取一个web页面内容,然后分析文本了解页面的内容。

我们将使用urllib模块来抓取web页面:


import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
print (html)

从打印结果中可以看到,结果包含许多需要清理的HTML标签。

然后BeautifulSoup模块来清洗这样的文字:


from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
# 这需要安装html5lib模块
text = soup.get_text(strip=True)
print (text)

现在我们从抓取的网页中得到了一个干净的文本。

下一步,将文本转换为tokens,像这样:


from bs4 import BeautifulSoup
import urllib.request
response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
print (tokens)

统计词频

text已经处理完毕了,现在使用Python NLTK统计token的频率分布。

可以通过调用NLTK中的FreqDist()方法实现:


from bs4 import BeautifulSoup
import urllib.request
import nltk

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
freq = nltk.FreqDist(tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

如果搜索输出结果,可以发现最常见的token是PHP。

您可以调用plot函数做出频率分布图:


freq.plot(20, cumulative=False)
# 需要安装matplotlib库

这上面这些单词。比如of,a,an等等,这些词都属于停用词。

一般来说,停用词应该删除,防止它们影响分析结果。

处理停用词

NLTK自带了许多种语言的停用词列表,如果你获取英文停用词:


from nltk.corpus import stopwords
stopwords.words('english')

现在,修改下代码,在绘图之前清除一些无效的token:


clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if token not in sr:
    clean_tokens.append(token)

最终的代码应该是这样的:


from bs4 import BeautifulSoup
import urllib.request
import nltk
from nltk.corpus import stopwords

response = urllib.request.urlopen('http://php.net/')
html = response.read()
soup = BeautifulSoup(html,"html5lib")
text = soup.get_text(strip=True)
tokens = text.split()
clean_tokens = list()
sr = stopwords.words('english')
for token in tokens:
  if not token in sr:
    clean_tokens.append(token)
freq = nltk.FreqDist(clean_tokens)
for key,val in freq.items():
  print (str(key) + ':' + str(val))

现在再做一次词频统计图,效果会比之前好些,因为剔除了停用词:


freq.plot(20,cumulative=False)

使用NLTK Tokenize文本

在之前我们用split方法将文本分割成tokens,现在我们使用NLTK来Tokenize文本。

文本没有Tokenize之前是无法处理的,所以对文本进行Tokenize非常重要的。token化过程意味着将大的部件分割为小部件。

你可以将段落tokenize成句子,将句子tokenize成单个词,NLTK分别提供了句子tokenizer和单词tokenizer。

假如有这样这段文本:

Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

使用句子tokenizer将文本tokenize成句子:


from nltk.tokenize import sent_tokenize

mytext = "Hello Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:

['Hello Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这是你可能会想,这也太简单了,不需要使用NLTK的tokenizer都可以,直接使用正则表达式来拆分句子就行,因为每个句子都有标点和空格。

那么再来看下面的文本:

Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude.

这样如果使用标点符号拆分,Hello Mr将会被认为是一个句子,如果使用NLTK:


from nltk.tokenize import sent_tokenize
mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(sent_tokenize(mytext))

输出如下:
['Hello Mr. Adam, how are you?', 'I hope everything is going well.', 'Today is a good day, see you dude.']

这才是正确的拆分。

接下来试试单词tokenizer:


from nltk.tokenize import word_tokenize

mytext = "Hello Mr. Adam, how are you? I hope everything is going well. Today is a good day, see you dude."
print(word_tokenize(mytext))

输出如下:

['Hello', 'Mr.', 'Adam', ',', 'how', 'are', 'you', '?', 'I', 'hope', 'everything', 'is', 'going', 'well', '.', 'Today', 'is', 'a', 'good', 'day', ',', 'see', 'you', 'dude', '.']

Mr.这个词也没有被分开。NLTK使用的是punkt模块的PunktSentenceTokenizer,它是NLTK.tokenize的一部分。而且这个tokenizer经过训练,可以适用于多种语言。

非英文Tokenize

Tokenize时可以指定语言:


from nltk.tokenize import sent_tokenize

mytext = "Bonjour M. Adam, comment allez-vous? J'espère que tout va bien. Aujourd'hui est un bon jour."
print(sent_tokenize(mytext,"french"))

输出结果如下:

['Bonjour M. Adam, comment allez-vous?', "J'espère que tout va bien.", "Aujourd'hui est un bon jour."]

同义词处理

使用nltk.download()安装界面,其中一个包是WordNet。

WordNet是一个为自然语言处理而建立的数据库。它包括一些同义词组和一些简短的定义。

您可以这样获取某个给定单词的定义和示例:


from nltk.corpus import wordnet

syn = wordnet.synsets("pain")
print(syn[0].definition())
print(syn[0].examples())

输出结果是:

a symptom of some physical hurt or disorder
['the patient developed severe pain and distension']

WordNet包含了很多定义:


from nltk.corpus import wordnet

syn = wordnet.synsets("NLP")
print(syn[0].definition())
syn = wordnet.synsets("Python")
print(syn[0].definition())

结果如下:

the branch of information science that deals with natural language information
large Old World boas

可以像这样使用WordNet来获取同义词:


from nltk.corpus import wordnet
synonyms = []
for syn in wordnet.synsets('Computer'):
  for lemma in syn.lemmas():
    synonyms.append(lemma.name())
print(synonyms)

输出:

['computer', 'computing_machine', 'computing_device', 'data_processor', 'electronic_computer', 'information_processing_system', 'calculator', 'reckoner', 'figurer', 'estimator', 'computer']

反义词处理

也可以用同样的方法得到反义词:


from nltk.corpus import wordnet

antonyms = []
for syn in wordnet.synsets("small"):
  for l in syn.lemmas():
    if l.antonyms():
      antonyms.append(l.antonyms()[0].name())
print(antonyms)

输出:
['large', 'big', 'big']

词干提取

语言形态学和信息检索里,词干提取是去除词缀得到词根的过程,例如working的词干为work。

搜索引擎在索引页面时就会使用这种技术,所以很多人为相同的单词写出不同的版本。

有很多种算法可以避免这种情况,最常见的是波特词干算法。NLTK有一个名为PorterStemmer的类,就是这个算法的实现:


from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('working'))
print(stemmer.stem('worked'))

输出结果是:

work
work

还有其他的一些词干提取算法,比如 Lancaster词干算法。

非英文词干提取

除了英文之外,SnowballStemmer还支持13种语言。

支持的语言:


from nltk.stem import SnowballStemmer

print(SnowballStemmer.languages)

'danish', 'dutch', 'english', 'finnish', 'french', 'german', 'hungarian', 'italian', 'norwegian', 'porter', 'portuguese', 'romanian', 'russian', 'spanish', 'swedish'

你可以使用SnowballStemmer类的stem函数来提取像这样的非英文单词:


from nltk.stem import SnowballStemmer
french_stemmer = SnowballStemmer('french')
print(french_stemmer.stem("French word"))

单词变体还原

单词变体还原类似于词干,但不同的是,变体还原的结果是一个真实的单词。不同于词干,当你试图提取某些词时,它会产生类似的词:


from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
print(stemmer.stem('increases'))

结果:

increas

现在,如果用NLTK的WordNet来对同一个单词进行变体还原,才是正确的结果:


from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('increases'))

结果:

increase

结果可能会是一个同义词或同一个意思的不同单词。

有时候将一个单词做变体还原时,总是得到相同的词。

这是因为语言的默认部分是名词。要得到动词,可以这样指定:


from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))

结果:
play

实际上,这也是一种很好的文本压缩方式,最终得到文本只有原先的50%到60%。

结果还可以是动词(v)、名词(n)、形容词(a)或副词(r):


from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('playing', pos="v"))
print(lemmatizer.lemmatize('playing', pos="n"))
print(lemmatizer.lemmatize('playing', pos="a"))
print(lemmatizer.lemmatize('playing', pos="r"))

输出:
play
playing
playing
playing

词干和变体的区别

通过下面例子来观察:


from nltk.stem import WordNetLemmatizer
from nltk.stem import PorterStemmer

stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()
print(stemmer.stem('stones'))
print(stemmer.stem('speaking'))
print(stemmer.stem('bedroom'))
print(stemmer.stem('jokes'))
print(stemmer.stem('lisa'))
print(stemmer.stem('purple'))
print('----------------------')
print(lemmatizer.lemmatize('stones'))
print(lemmatizer.lemmatize('speaking'))
print(lemmatizer.lemmatize('bedroom'))
print(lemmatizer.lemmatize('jokes'))
print(lemmatizer.lemmatize('lisa'))
print(lemmatizer.lemmatize('purple'))

输出:
stone
speak
bedroom
joke
lisa
purpl
---------------------
stone
speaking
bedroom
joke
lisa
purple

词干提取不会考虑语境,这也是为什么词干提取比变体还原快且准确度低的原因。

个人认为,变体还原比词干提取更好。单词变体还原返回一个真实的单词,即使它不是同一个单词,也是同义词,但至少它是一个真实存在的单词。

如果你只关心速度,不在意准确度,这时你可以选用词干提取。

在此NLP教程中讨论的所有步骤都只是文本预处理。在以后的文章中,将会使用Python NLTK来实现文本分析。

相关推荐:

分享python snownlp的实例教程

Python之正弦曲线实现方法分析

Python调式知识详解

以上就是浅谈Python NLP入门的详细内容,更多请关注php中文网其它相关文章!

  • 相关标签:Python 入门 浅谈
  • 本文原创发布php中文网 ,转载请注明出处,感谢您的尊重!
  • 独孤九贱(4)_PHP视频教程

    江湖传言:PHP是世界上最好的编程语言。真的是这样吗?这个梗究竟是从哪来的?学会本课程,你就会明白了。 PHP中文网出品的PHP入门系统教学视频,完全从初学者的角度出发,绝不玩虚的,一切以实用、有用...

    独孤九贱(5)_ThinkPHP5视频教程

    ThinkPHP是国内最流行的中文PHP开发框架,也是您Web项目的最佳选择。《php.cn独孤九贱(5)-ThinkPHP5视频教程》课程以ThinkPHP5最新版本为例,从最基本的框架常识开始,将...

    ThinkPHP5实战之[教学管理系统]

    本套教程,以一个真实的学校教学管理系统为案例,手把手教会您如何在一张白纸上,从零开始,一步一步的用ThinkPHP5框架快速开发出一个商业项目。

    PHP入门视频教程之一周学会PHP

    所有计算机语言的学习都要从基础开始,《PHP入门视频教程之一周学会PHP》不仅是PHP的基础部分更主要的是PHP语言的核心技术,是学习PHP必须掌握的内容,任何PHP项目的实现都离不开这部分的内容,通...

    独孤九贱(1)_HTML5视频教程

    《php.cn原创html5视频教程》课程特色:php中文网原创幽默段子系列课程,以恶搞,段子为主题风格的php视频教程!轻松的教学风格,简短的教学模式,让同学们在不知不觉中,学会了HTML知识。 ...

    ThinkPHP5快速开发企业站点[全程实录]更新中...

    本课以最新版ThinkPHP5.0.10为基础进行开发,全程实录一个完整企业点,从后台到前台,从控制器到路由的全套完整教程,不论是你是新人,还是有一定开发经验的程序员,都可以从中学到实用的知识~~

    Thinkphp3.2.3个人博客开发

    ThinkPHP是一个快速、开源的轻量级国产PHP开发框架,是业内最流行的PHP框架之一。本课程以博客系统为例,讲述如何使用TP实战开发,从中学习Thinkphp的实践应用。模版下载地址:http:/...

    PHP实战天龙八部之仿爱奇艺电影网站

    本课程是php实战开发课程,以爱奇艺电影网站为蓝本从零开发一个自己的网站。目的是让大家了解真实项目的架构及开发过程

    独孤九贱(8)_php从零开始开发属于自己的php框架

    本课以一个极简的PHP开发框架为案例,向您展示了一个PHP框架应该具有的基本功能,以及具体的实现方法,让您快速对PHP开发框架的底层实现有一个清楚的认识,为以后学习其实的开发框架打下坚实的基础。

    独孤九贱(3)_JavaScript视频教程

    javascript是运行在浏览器上的脚本语言,连续多年,被评为全球最受欢迎的编程语言。是前端开发必备三大法器中,最具杀伤力。如果前端开发是降龙十八掌,好么javascript就是第18掌:亢龙有悔。...

    直播实录:PHP魔鬼训练营[从零开始制作个人博客]

    本站9月直播课已经结束,本套教程是直播实录,没有报上名或者漏听学员福利来了,赶紧看看吧,说不定这里就有你的菜

    2018前端入门_HTML5

    轻松明快,简洁生动,让你快速走入HTML5的世界,体会语义化开发的魅力

    JavaScript极速入门_玉女心经系列

    JavaScript能够称得上是史上使用最广泛的编程语言,也是前端开发必须掌握的三技能之一:描述网页内容的HTML、描述网页样式的CSS以及描述网页行为的JavaScript。本章节将帮助大家迅速掌握...

    PHP用户注册登录系统视频教程

    《php用户注册登录系统》主要介绍网站的登录注册功能,我们会从最简单的实现登录注册功能开始,增加验证码,cookie验证等,丰富网站的登录注册功能

    独孤九贱(7)_Bootstrap视频教程

    Bootstrap 是最受欢迎的 HTML、CSS 和 JS 框架,用于开发响应式布局、移动设备优先的 WEB 项目。为所有开发者、所有应用场景而设计,它让前端开发更快速、简单,所有开发者都能快速上手...

    PHP学生管理系统视频教程

    《PHP学生管理系统视频教程》主要给大家讲解了HTML,PHP,MySQL之间的相互协作,实现动态的网页显示和获取数据.

    独孤九贱(2)_CSS视频教程

    《php.cn独孤九贱(2)-css视频教程》课程特色:php中文网原创幽默段子系列课程,以恶搞,段子为主题风格的php视频教程!轻松的教学风格,简短的教学模式,让同学们在不知不觉中,学会了CSS知识...

    弹指间学会HTML视频教程

    《弹指间学会HTML视频教程》从最基本的概念开始讲起,步步深入,带领大家学习HTML,了解各种常用标签的意义以及基本用法,学习HTML知识为以后的学习打下基础

    独孤九贱(6)_jQuery视频教程

    jQuery是一个快速、简洁的JavaScript框架。设计的宗旨是“write Less,Do More”,即倡导写更少的代码,做更多的事情。它封装JavaScript常用的功能代码,提供一种简便的...

    最新微信小程序开发视频教程

    《最新微信小程序开发视频教程》本节课程是由微趋道录制,讲述了如何申请一个微信小程序,以及开发中需要使用哪些工具,和需要注意哪些等。

    • 小云云

      学生

    • 想不好签名了...
    • 5865篇
      文章总数
    • 551
      文章总浏览数

    头条

    推荐视频教程

  • javascript初级视频教程
  • jquery 基础视频教程
  • javascript三级联动视频教程
  • 独孤九贱(3)_JavaScript视频教程
  • 独孤九贱(6)_jQuery视频教程
  • 最新更新