Oracle数据库查询性能优化问题
查询、新增、修改及删除数据库等操作是影响web应用程序性能指标的重大因素。下面一些常见的建议可以提高查询性能问题。
查询、新增、修改及删除数据库等操作是影响web应用程序性能指标的重大因素。下面一些常见的建议可以提高查询性能问题。
1. 优化JDBC连接
采用数据库连接池机制可以将曾打开的数据库连接保存在缓存中,这样程序其他部分就可以继续利用,从而节省了数据库连接耗费的时间。
2. 提高select子句的查询速度
(1)建立索引
若经常要通过表中的某一字段来查询数据,就可以将这个字段设置为表的一个索引。在select查询中如果发现查询的列是一个索引列,则数据库会从索引表中扫描数据,不再需要从整个数据表中扫描,性能会极大的提高。
(2)在select子句中避免使用“*”
数据库在解析的过程中, 会将“*” 依次转换成所有的列名, 这个工作是通过查询数据字典完成的, 这意味着将耗费更多的时间。最好可以把列名一一写出。
3. 避免使用耗费资源的操作
带有DISTINCT,UNION,MINUS,INTERSECT,ORDER BY的SQL语句会启动SQL引擎执行耗费资源的排序(SORT)功能。 DISTINCT需要一次排序操作, 而其他的至少需要执行两次排序。GROUP BY会触发嵌入排序(NESTED SORT) ; 执行UNION时, 唯一排序(SORT UNIQUE)操作被执行,而且它晚于嵌入排序。 嵌入的排序的深度会大大影响查询的效率。
4. 优化where子句来提高查询速度
(1)SQL语句用大写:因为Oracle总是先解析sql语句,把小写的字母转换成大写的再执行。
(2)WHERE子句中的连接顺序:ORACLE采用自下而上(从右到左)的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前, 那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。
(3)用Where子句替换HAVING子句: 避免使用HAVING子句, HAVING 只会在检索出所有记录之后才对结果集进行过滤. 这个处理需要排序,总计等操作. 如果能通过WHERE子句限制记录的数目,那就能减少这方面的开销.
(4)当查询多个表时,使用表的别名:可以减少解析的时间并减少那些由Column歧义引起的语法错误。
(5)用EXISTS替代IN、用NOT EXISTS替代NOT IN、用EXISTS替换DISTINCT: 在子查询中,NOT IN子句将执行一个内部的排序和合并. 无论在哪种情况下,NOT IN都是最低效的 (因为它对子查询中的表执行了一个全表遍历). 为了避免使用NOT IN ,我们可以把它改写成外连接(Outer Joins)或NOT EXISTS。EXISTS 使查询更为迅速,因为RDBMS核心模块将在子查询的条件一旦满足后,立刻返回结果。
(6)优化GROUP BY:为提高group by语句的效率,可在其之前先过滤不需要的记录。
(7)高效使用where子句:某些where子句不使用索引,,可以替换(索引只会告诉表中内容,不能告诉表中不存在的),如用a>0 and a0,用in代替or.
本文永久更新链接地址:

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.
