


Numpy implements extension methods for merging multi-dimensional matrices and lists
This article mainly introduces the extension method of numpy to implement merging multi-dimensional matrices and lists. It has certain reference value. Now I share it with you. Friends in need can refer to it
1. Merge multiple numpy matrices
1. First create two multi-dimensional matrices
The size of matrix a is (2, 3, 2)
The size of matrix b is (3, 2, 3)
Use the concatentate function to merge two multi-dimensional matrices
After merging, it should be (5, 3, 2)
In [1]: import numpy as np In [2]: a = np.ndarray((3, 2, 3)) In [3]: b = np.ndarray((2, 2, 3)) In [4]: print(a.shape, b.shape) (3, 2, 3) (2, 2, 3) In [5]: c = np.concatenate((a, b), axis = 0) In [6]: print(c.shape) (5, 2, 3) In [7]:
2. Addition of matrix
The addition of matrix is Use the append function. List also has this function, but the way they are used is slightly different.
1. Create an ndarray
2, and then use the np.append() function to append (note that it is np.append, not a.append)
In [2]: import numpy as np In [3]: a = np.array([1, 2, 3, 4, 5]) In [4]: a = np.append(a, 10) In [5]: a Out[5]: array([ 1, 2, 3, 4, 5, 10]) In [6]: a = np.append(a, [1, 2, 3]) In [7]: a Out[7]: array([ 1, 2, 3, 4, 5, 10, 1, 2, 3])
3. List extension (extend)
1. The expansion of the list is to merge the two lists
2. Use the extend function
In [9]: a = [1, 2, 3, 4] In [10]: b = [5, 6, 7, 8] In [11]: a Out[11]: [1, 2, 3, 4] In [12]: b Out[12]: [5, 6, 7, 8] In [13]: c = a.extend(b) In [14]: c In [15]: a Out[15]: [1, 2, 3, 4, 5, 6, 7, 8]
Please note that the return value of the extend function is None, so the output of c in line 13 above is empty, and the value of a has changed, so it is expanded directly after a and does not have any return value.
4. Append to the list
To append the list, just use append
1. Create list a
2. Append data after a
In [28]: a = [1, 2,3,4] In [29]: a.append(6) In [30]: a Out[30]: [1, 2, 3, 4, 6] In [31]:
Related recommendations:
How to delete rows or columns in numpy.array
The above is the detailed content of Numpy implements extension methods for merging multi-dimensional matrices and lists. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to update the numpy version: 1. Use the "pip install --upgrade numpy" command; 2. If you are using the Python 3.x version, use the "pip3 install --upgrade numpy" command, which will download and install it, overwriting the current NumPy Version; 3. If you are using conda to manage the Python environment, use the "conda install --update numpy" command to update.

Numpy is an important mathematics library in Python. It provides efficient array operations and scientific calculation functions and is widely used in data analysis, machine learning, deep learning and other fields. When using numpy, we often need to check the version number of numpy to determine the functions supported by the current environment. This article will introduce how to quickly check the numpy version and provide specific code examples. Method 1: Use the __version__ attribute that comes with numpy. The numpy module comes with a __

It is recommended to use the latest version of NumPy1.21.2. The reason is: Currently, the latest stable version of NumPy is 1.21.2. Generally, it is recommended to use the latest version of NumPy, as it contains the latest features and performance optimizations, and fixes some issues and bugs in previous versions.

Teach you step by step to install NumPy in PyCharm and make full use of its powerful functions. Preface: NumPy is one of the basic libraries for scientific computing in Python. It provides high-performance multi-dimensional array objects and various functions required to perform basic operations on arrays. function. It is an important part of most data science and machine learning projects. This article will introduce you to how to install NumPy in PyCharm, and demonstrate its powerful features through specific code examples. Step 1: Install PyCharm First, we

How to upgrade numpy version: Easy-to-follow tutorial, requires concrete code examples Introduction: NumPy is an important Python library used for scientific computing. It provides a powerful multidimensional array object and a series of related functions that can be used to perform efficient numerical operations. As new versions are released, newer features and bug fixes are constantly available to us. This article will describe how to upgrade your installed NumPy library to get the latest features and resolve known issues. Step 1: Check the current NumPy version at the beginning

With the rapid development of fields such as data science, machine learning, and deep learning, Python has become a mainstream language for data analysis and modeling. In Python, NumPy (short for NumericalPython) is a very important library because it provides a set of efficient multi-dimensional array objects and is the basis for many other libraries such as pandas, SciPy and scikit-learn. In the process of using NumPy, you are likely to encounter compatibility issues between different versions, then

Numpy can be installed using pip, conda, source code and Anaconda. Detailed introduction: 1. pip, enter pip install numpy in the command line; 2. conda, enter conda install numpy in the command line; 3. Source code, unzip the source code package or enter the source code directory, enter in the command line python setup.py build python setup.py install.

Numpy installation guide: One article to solve installation problems, need specific code examples Introduction: Numpy is a powerful scientific computing library in Python. It provides efficient multi-dimensional array objects and tools for operating array data. However, for beginners, installing Numpy may cause some confusion. This article will provide you with a Numpy installation guide to help you quickly solve installation problems. 1. Install the Python environment: Before installing Numpy, you first need to make sure that Py is installed.
