


How to implement stack and typical applications using C language and Python
Preface
What is a stack? You can understand it as a first-in-last-out data structure (First In Last Out), a linear table with limited operations...
C implementation
With the help of void pointers and function pointers in C language, we can implement a chained universal stack:
/* stack.h */ #ifndef _STACK_H_ #define _STACK_H_ typedef struct stackNode { void *value; struct stackNode *next; } stackNode; typedef struct stack { stackNode *top; void (*free)(void *ptr); unsigned long size; } stack; /* Functions implemented as macros */ #define stackTop(s) ((s)->top) #define stackSize(s) ((s)->size) #define stackSetFreeMethod(s, m) ((s)->free = (m)) #define stackGetFreeMethod(s) ((s)->free) stack *stackCreate(void); stack *stackPush(stack *stack, void *value); stackNode *stackPop(stack *stack); void stackClear(stack *stack); #endif /* _STACK_H_ */ /* stack.c */ #include <stdlib.h> #include "stack.h" stack *stackCreate(void) { struct stack *stack; if ((stack = (struct stack *)malloc(sizeof(struct stack))) == NULL) return NULL; stack->top = NULL; stack->free = NULL; stack->size = 0; return stack; } stack *stackPush(stack *stack, void *value) { stackNode *node; if ((node = (stackNode *)malloc(sizeof(stackNode))) == NULL) return NULL; node->value = value; node->next = (stack->size == 0) ? NULL : stack->top; stack->top = node; stack->size++; return stack; } stackNode *stackPop(stack *stack) { stackNode *node; node = stack->top; if (stack->size != 0) { stack->top = node->next; stack->size--; } return node; } void stackClear(stack *stack) { unsigned long size; stackNode *current, *next; current = stack->top; size = stack->size; while (size--) { next = current->next; if (stack->free) stack->free(current->value); free(current); current = next; } free(stack); }
Here The implementation is attached with a head node, which is mainly used to register functions related to stack node operations. We also store the stack size information, so that we can get the current stack size in O(1) time!
Python implementation
In Python, list can actually be used directly as a stack, if you only operate on one end of it. Of course, we can also simply encapsulate it:
class Stack(object): """A stack encapsulation based on list.""" def __init__(self): self.items = [] def empty(self): return self.items == [] def clear(self): del self.items[:] @property def size(self): return len(self.items) def push(self, item): """Add a new item to the top of the stack.""" self.items.insert(0, item) def pop(self): """Remove the top item from the stack.""" return self.items.pop(0) def top(self): """Return the top item from the stack but not remove it. """ return self.items[0] def __iter__(self): return iter(self.items) def __next__(self): return self.pop()
Application
Here are some typical applications of the stack.
Bracket matching
Given an arithmetic expression or a piece of C code, how to write a program to verify whether the brackets in it match? With the help of the stack, this can be easily achieved. The algorithm flow is as follows:
Traverse characters:
1. If it is a left bracket, push it onto the stack;
2. If it is a right bracket, this If the stack is empty at this time, it means there is a mismatch. If the stack is not empty and the left bracket and the right bracket that are popped are of different types, it means there is a mismatch;
After the traversal is completed, if the stack is not Empty means no match.
def check_pares(exp): """Check if parentheses match in a expression.""" stack = Stack() pares = {')': '(', ']': '[', '}': '{'} for x in exp: if x in '([{': stack.push(x) elif x in ')]}': if stack.empty() or pares[x] != stack.pop(): return False return True if stack.empty() else False
Number system conversion
Take decimal to binary conversion as an example:
def dec2bin(dec): """Converting decimal number to binary string.""" if dec == 0: return '0' stack = Stack() while dec: r = dec % 2 stack.push(r) dec = dec // 2 return ''.join(str(digit) for digit in stack)
Simulated recursion
Traversing a binary tree is a classic recursive application. Let's take preorder traversal as an example. The recursive version of the code is easy to write:
def preorder_traversal(root): """ 1 / \ 2 3 / \ \ 4 5 6 """ if not root: return print(root.val) preorder_traversal(root.lchild) preorder_traversal(root.rchild)
The following is the non-recursive version:
def preorder_traversal(root) s = Stack() while s.size or root: if root: print(root.val) s.push(root) root = root.lchild else: root = s.pop().rchild
Summary
The above is all about how to use C language and Python to implement stacks and typical applications. I hope it will be helpful to everyone's learning, and I hope everyone will continue to support the PHP Chinese website.
For more articles on how to use C language and Python to implement stacks and typical applications, please pay attention to the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
