编写Python小程序来统计测试脚本的关键字
通常自动化测试项目到了一定的程序,编写的测试代码自然就会很多,如果很早已经编写的测试脚本现在某些基础函数、业务函数需要修改,那么势必要找出那些引用过这个被修改函数的地方,有些IDE支持全文查找和引用查找,而有些简单的可能就没有,因为日后要用到统计功能、和一些其它的需求,所以写了一个脚本。除了跟目录下全文查找引用过的文件外,还是支持统计查找到的数量,一次可以查找多个关键字,支持按主关键字来归类。
#encoding: utf-8 import os import sys import re reload(sys) sys.setdefaultencoding("utf-8") short_exclude = [".svn", "sendbox"] ##不检查的文件、目录名 long_exclude = [] ##不包含检查的文件、目录的完整路径 extend_name = [".rb"] ##指定检查的文件后缀 temp_key_words = [ { "key" : "#作者:", "display" : "作者", "times" : -1, "match" : "include", "primary_key" : True, }, { "key" : "#[summary]", "display" : "完成用例数", "times" : -1, "match" : "include", }, { "key" : "File.expand_path", "display" : "有状态行数", "times" : -1, "ignore_case" : True, }, { "key" : "def\s+test_", "display" : "有效用例数", "times" : -1, "match" : "regex", "ignore_case" : True, }, { "key" : "#def\s+test_", "display" : "注释用例数", "times" : -1, "match" : "regex", "ignore_case" : True, }, ] for kv in temp_key_words: if not "key" in kv: raise "以下的列表中没有【key】值!\n%s" % kv if not "key" in kv: raise "以下的列表中没有【display】值!\n%s" % kv kv['times'] = kv.get('times', -1) ##默认为不限制检查次数 if kv.get("ignore_case", True)==False: ##默认忽略大小写 flag = 0 else: flag = re.I kv['pattern'] = re.compile(kv['key'], flag) if kv.get("primary_key", False): kv['times'] = 1 import copy key_words = [] def deepcopy(objs): t_list = [] for obj in objs: t_list.append(copy.copy(obj)) return t_list def loop_case(root_dir): t_sum = [] print root_dir sub_gen = os.listdir(root_dir) for sub in sub_gen: if sub in short_exclude: ##在不检查文件、目录范围中 continue abs_path = os.path.join(root_dir, sub) if long_exclude: is_exclude = False for exclude in long_exclude: if exclude == abs_path[-len(exclude):]: is_exclude = True break if is_exclude: continue print abs_path if os.path.isdir(abs_path): print "dir" t_sum.extend(loop_case(abs_path)) elif os.path.isfile(abs_path): if not "." + abs_path.rsplit(".", 1)[1] in extend_name: ##不在后缀名 检查范围中 continue print "file" global key_words key_words = deepcopy(temp_key_words) t_sum.append(count_case(abs_path)) return t_sum def count_case(abs_path): t_dict = {} with open(abs_path) as f: for l in f: l = l.strip() match_rule(l) index = 0 count_result = [0] * len(key_words) for kv in key_words: if 'primary_key' in kv: t_dict['primary_key'] = kv.get('display') t_dict['primary_key_value'] = kv.get('primary_key_value', "None") count_result[index] = -1-kv['times'] index += 1 t_dict['match_result'] = count_result t_dict['file_path'] = abs_path return t_dict def match_rule(line): primary_key = None for kv in key_words: match = False if kv['times']==0: ##检查次数已满,不再检查 continue if kv.get('match', "") == "regex": ##指定了匹配方式为:正则 if kv['pattern'].match(line): ##匹配正则成功 match = True else: ##默认匹配方式为: 包含 if kv['key'] in line: ##包含了指定字符串 match = True if match: if kv.get('primary_key', False): kv['primary_key_value'] = line.split(kv['key'])[1].strip() # kv['primary_key'] = False kv['times'] -= 1 ##匹配成功,同理剩余匹配的次数 -1 return primary_key def format_info(sum_list): tip_list = [] p_k_dict = {} for d in sum_list: p_k = d['primary_key_value'] if p_k not in p_k_dict: p_k_dict[p_k] = [0] * len(key_words) temp_list = [] m = d['match_result'] temp_list.append("文件名称:%s\n%s:%s\n" % (d['file_path'], d['primary_key'], d['primary_key_value'])) for i in range(len(m)): if 'primary_key' in key_words[i]: continue else: t_s = str(m[i]) temp_list.append("%s:%s\n" % (key_words[i]["display"], t_s)) p_k_dict[p_k][i] += m[i] tip_list.append("".join(temp_list)) p_k_dict[p_k][0] += 1 tip_list.append("===========================主键统计分割线===============================") total_dict = {} for kv in key_words: if 'primary_key' not in kv: total_dict[kv['display']] = 0 total_dict['全部文件数'] = 0 for k,v in p_k_dict.items(): temp_list = [] temp_list.append("主键:%s\n文件总数:%s\n" % (k, v[0])) for i in range(1, len(v)): temp_list.append("%s:%s\n" % (key_words[i]["display"], str(v[i]))) total_dict[key_words[i]["display"]] += v[i] tip_list.append("".join(temp_list)) total_dict['全部文件数'] += v[0] tip_list.append("===========================全部统计分割线===============================") temp_list = [] for k,v in total_dict.items(): temp_list.append("全部%s:%s\n" % (k,v)) tip_list.append("".join(temp_list)) tip_msg = "\n".join(tip_list) print tip_msg open(r"sum_case.log", "w").write(tip_msg) if __name__=="__main__": if len(sys.argv) > 1: root_list = sys.argv[1:] else: root_list = [os.curdir] sum_list = [] for root_dir in root_list: if os.path.exists(root_dir) and os.path.isdir(root_dir): sum_list.extend(loop_case(root_dir)) format_info(sum_list) else: print "给定的根目录无效\n%s" % root_dir
可以通过配置开头的设置来确定检查什么关键字,文件类型,过滤哪些文件和目录等

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.
