从Java的类型转换看MySQL和Oracle中的隐式转换
说起数据类型转换,在开发中如此,在数据库中也是如此,之前简单对比过MySQL和Oracle的数据类型转换情况,可以参见MySQL和Oracle
说起数据类型转换,在开发中如此,在数据库中也是如此,之前简单对比过MySQL和Oracle的数据类型转换情况,可以参见MySQL和Oracle中的隐式转换
不过当时写完之后,有个读者随口问了一句为什么,为什么呢?似乎自己还是一知半解,说是规则,无规矩不成方圆,倒也无可非议,不过我觉得还是要再看看,看看还能有哪些收获,接下来的内容我就不能保证正确性了,希望大家明辨,也希望提出意见,毕竟就是希望把问题搞明白而已。
首先开发语言中就有数据类型的隐式转换,这一点在java中尤为明显,毕竟一个承载了太多使命的语言如此庞大,又是强类型语言,数据类型的转换就是一个尤为重要的部分了。Java中的数据类型转换主要有下面的规则。
//转换规则:从存储范围小的类型到存储范围大的类型。
//具体规则为:byte→short(char)→int→long→float→double
自己也嘚瑟了一下,写了个简单的小程序以示明证,这个程序不能说明我会java.
public class Test {
public static void main(String args[]){
/*1*/ System.out.println("aa");
/*2*/ System.out.println('a');
/*3*/ byte a=10;
/*4*/ System.out.println(a);
/*5*/ char b='b';
/*6*/ int c=b;
/*7*/ System.out.println(b);
/*8*/ System.out.println(c);
}
}
这个程序的输出为
aa
a
10
b
98
这样写的目的就是,
第1行,第2行中的单引号,双引号需要做的事情就是标示它是一个变量值,两者的效果在这个时候是一致的。
第3行初始化了一个byte变量,然后输出,这个时候还是byte
但是第5行声明了一个char型变量,然后在第6行中做了类型的隐式转换,在第7行中输出为字符b,但是在第8行输出为
通过这个简单的例子可以发现确实数据类型做了隐式转换,而且单引号,双引号在这个例子中的作用是一致的,就是标示变量。
因为在Java中查看数据类型的转换代价还是相对要困难一些,我们可以在数据库中来类比。
首先还是重复之前的测试,准备一批的数据。创建一个表,然后插入一些值。
create table test (id1 number,id2 varchar2(10));
begin
for i in 1..100 loop
insert into test values(i,chr(39)||i||chr(39));
end loop;
commit;
end;
/
create index ind1_test on n1.test(id1);
create index ind2_test on n1.test(id2);
然后收集统计信息。
exec dbms_stats.gather_table_stats('TEST','TEST',CASCADE=>TRUE);
这个时候查看执行计划
explain plan for select *from test where id1='2';
SQL> select *from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
Plan hash value: 2759464289
-----------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 20 | 1 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| TEST | 1 | 20 | 1 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IND1_TEST | 1 | | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
-------------------------------------------------------------
2 - access("ID1"=2)
通过这个确实可以看到谓词信息的部分 2 - access("ID1"=2) 已经自动做了转换,这个时候一个触发了一个索引扫描。
但是这个过程还是看不出有数据类型转换的痕迹,我们做一个看似有问题的例子,来触发一下。尽管id1位int型,但是使用字符型来触发。
SQL> explain plan for select *from test where id1='A';
Explained.
SQL> select *from table(dbms_xplan.display);
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------------------------
Plan hash value: 2759464289
-----------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 20 | 1 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| TEST | 1 | 20 | 1 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IND1_TEST | 1 | | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
------------------------------------------------
2 - access("ID1"=TO_NUMBER('A'))
可以看到谓词信息已经发生了变化。 2 - access("ID1"=TO_NUMBER('A'))从这个地方我们可以看到确实触发了一个to_number的操作。
而优化器在这个时候虽然触发了,但是在sql运行的时候,就会报出错误,这个时候可以看到Oracle还是蛮严谨的。
SQL> select *from test where id1='A';
select *from test where id1='A'
*
ERROR at line 1:
ORA-01722: invalid number
而如果使用双引号,生成执行计划都会抛错。
SQL> explain plan for select *from test where id1="A";
explain plan for select *from test where id1="A"
*
ERROR at line 1:
ORA-00904: "A": invalid identifier
可见单引号和双引号在Oracle代表的含义还是有很大差别。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
