Analysis of the principles of timers in JavaScript
In our work, many people think of the two functions setTimeout() and setInterval() when talking about the timer in javascript, but they don’t know the timer in JavaScript. What is the principle, then this article will analyze the working principle and difference of timer function from the perspective of event loop (Event Loop)!
setTimeout()
MDN defines setTimeout
as:
Call a function after the specified delay time or Execute a code snippet.
Syntax
The syntax of setTimeout is very simple. The first parameter is the callback function, and the second parameter is the delay time. The function returns an ID unique identifier of numeric type. This ID can be used as a parameter of clearTimeout to cancel the timer:
var timeoutID = window.setTimeout(code, delay);
IE0+ also supports the passing of callback parameters:
var timeoutID = window.setTimeout(func, delay, [param1, param2, ...]);
setInterval()
MDN defines setInterval as:
Periodically call a function (function) or execute a piece of code.
Since the usage of setInterval and setTimeout are the same, they are not listed here anymore.
Explanation of the second parameter (delay)
Due to the event loop mechanism of javascript, the second parameter does not mean that the callback will be executed immediately after delay milliseconds. function, instead try to add the callback function to the event queue. In fact, there is a difference in the processing of setTimeout and setInterval at this point:
setTimeout: After the delay milliseconds, no matter what, the callback function is directly added to the event queue.
setInterval: After delaying milliseconds, first check whether there is a callback function in the event queue that has not yet been executed (the callback function of setInterval). If it exists, do not go to the event queue again. A callback function has been added.
So, when there are time-consuming tasks in our code, the timer will not behave as we think.
Let’s understand the following code through an example. I originally hoped to be able to call the callback function at 100ms and 200ms (that is, just waiting for 100ms):
var timerStart1 = now(); setTimeout(function () { console.log('第一个setTimeout回调执行等待时间:', now() - timerStart1); var timerStart2 = now(); setTimeout(function () { console.log('第二个setTimeout回调执行等待时间:', now() - timerStart2); }, 100); }, 100); // 输出: // 第一个setTimeout回调执行等待时间: 106 // 第二个setTimeout回调执行等待时间: 107
var timerStart1 = now(); setTimeout(function () { console.log('第一个setTimeout回调执行等待时间:', now() - timerStart1); var timerStart2 = now(); setTimeout(function () { console.log('第二个setTimeout回调执行等待时间:', now() - timerStart2); }, 100); heavyTask(); // 耗时任务 }, 100); var loopStart = now(); heavyTask(); // 耗时任务 console.log('heavyTask耗费时间:', now() - loopStart); function heavyTask() { var s = now(); while(now() - s < 1000) { } } function now () { return new Date(); } // 输出: // heavyTask耗费时间: 1015 // 第一个setTimeout回调执行等待时间: 1018 // 第二个setTimeout回调执行等待时间: 1000
- Starts execution from the time-consuming task. After 100ms, the first setTimeout callback function is expected to be executed, so it is added to the event queue, but at this time the previous time-consuming task has not yet After execution, it can only wait in the queue until the time-consuming task is completed, so what we see in the result is: The first setTimeout callback execution waiting time: 1018.
- As soon as the first setTimeout callback is executed, the second setTimeout is opened. This timer is also expected to execute its callback function after a delay of 100ms. However, there is another time-consuming task in the first setTimeout. Its plot is the same as the first timer, and it also waits for 1000ms before starting execution.
- can be summarized by the following picture:
Let’s look at an example of setInterval:
var intervalStart = now(); setInterval(function () { console.log('interval距定义定时器的时间:', now() - loopStart); }, 100); var loopStart = now(); heavyTask(); console.log('heavyTask耗费时间:', now() - loopStart); function heavyTask() { var s = now(); while(now() - s < 1000) { } } function now () { return new Date(); } // 输出: // heavyTask耗费时间: 1013 // interval距定义定时器的时间: 1016 // interval距定义定时器的时间: 1123 // interval距定义定时器的时间: 1224
After a brief analysis of the execution principle of the JavaScript timer, I believe that my friends have a certain understanding of the working principle of the JavaScript timer. I hope it can help you.
Related recommendations:Javascript timer example codeIn-depth exploration of javascript timer
The above is the detailed content of Analysis of the principles of timers in JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

Face detection and recognition technology is already a relatively mature and widely used technology. Currently, the most widely used Internet application language is JS. Implementing face detection and recognition on the Web front-end has advantages and disadvantages compared to back-end face recognition. Advantages include reducing network interaction and real-time recognition, which greatly shortens user waiting time and improves user experience; disadvantages include: being limited by model size, the accuracy is also limited. How to use js to implement face detection on the web? In order to implement face recognition on the Web, you need to be familiar with related programming languages and technologies, such as JavaScript, HTML, CSS, WebRTC, etc. At the same time, you also need to master relevant computer vision and artificial intelligence technologies. It is worth noting that due to the design of the Web side

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

Essential tools for stock analysis: Learn the steps to draw candle charts in PHP and JS. Specific code examples are required. With the rapid development of the Internet and technology, stock trading has become one of the important ways for many investors. Stock analysis is an important part of investor decision-making, and candle charts are widely used in technical analysis. Learning how to draw candle charts using PHP and JS will provide investors with more intuitive information to help them make better decisions. A candlestick chart is a technical chart that displays stock prices in the form of candlesticks. It shows the stock price

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

With the rapid development of Internet finance, stock investment has become the choice of more and more people. In stock trading, candle charts are a commonly used technical analysis method. It can show the changing trend of stock prices and help investors make more accurate decisions. This article will introduce the development skills of PHP and JS, lead readers to understand how to draw stock candle charts, and provide specific code examples. 1. Understanding Stock Candle Charts Before introducing how to draw stock candle charts, we first need to understand what a candle chart is. Candlestick charts were developed by the Japanese

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest
