Java-Binary Search Tree (BST) algorithm sample code sharing
Binary Search Tree (Binary Search Tree) is an algorithm that combines the flexibility of linked list insertion with the efficiency of ordered array search. The following is the pure code for implementing various methods of BST.
Binary search tree (BST) definition
Binary sorting tree is either an empty tree, or It is a binary tree with the following properties:
If the left subtree is not empty, then the values of all nodes on the left subtree are Less than or equal to The value of its root node
If the right subtree is not empty, then right subtree The values of all nodes on are greater than or equal to the value of its root node
The left and right subtrees are also Respectively for the binary sorting tree
basic node implementation
public class BST<K extends Comparable<K>, V> { private Node root; private class Node { private K key; private V value; private Node left; private Node right; private int N; public Node(K key, V value, int N) { this.key = key; this.value = value; this.N = N; } } public int size() { return size(root); } private int size(Node x) { if (x == null) return 0; else return x.N; } }
find the key to get the value—— get
public V get(K key) { return get(root, key); } private V get(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) return root.value; else if (comp < 0) return get(root.left, key); else return get(root.right, key); }
Modify value/insert new value——put
public void put(K key, V value) { root = put(root, key, value); } private Node put(Node root, K key, V value) { if (root == null) return new Node(key, value, 1); int comp = key.compareTo(root.key); if (comp == 0) root.value = value; else if (comp < 0) root.left = put(root.left, key, value); else root.right = put(root.right, key, value); root.N = size(root.left) + size(root.right) + 1; return root; }
Maximum value/Minimum value——min/max
public K min() { return min(root).key; } private Node min(Node root) { if (root.left == null) return root; return min(root.left); }
public K max() { return max(root).key; } private Node max(Node root2) { if (root.right == null) return root; return max(root.right); }
Round up/down——floor/ceiling
public K floor(K key) { Node x = floor(root, key); if (x == null) return null; return x.key; } private Node floor(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp < 0) return floor(root.left, key); else if (comp > 0 && root.right != null && key.compareTo(min(root.right).key) >= 0) return floor(root.right, key); else return root; }
public K ceiling(K key) { Node x = ceiling(root, key); if (x == null) return null; return x.key; } private Node ceiling(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp > 0) return ceiling(root.right, key); else if (comp < 0 && root.left != null && key.compareTo(max(root.left).key) >= 0) return ceiling(root.left, key); else return root; }
Select——select
public K select(int k) { //找出BST中序号为k的键 return select(root, k); } private K select(Node root, int k) { if (root == null) return null; int comp = k - size(root.left); if (comp < 0) return select(root.left, k); else if (comp > 0) return select(root.right, k - (size(root.left) + 1)); else return root.key; }
Rank——rank
public int rank(K key) { //找出BST中键为key的序号是多少 return rank(root, key); } private int rank(Node root, K key) { if (root == null) return 0; int comp = key.compareTo(root.key); if (comp == 0) return size(root.left); else if (comp < 0) return rank(root.left, key); else return 1 + size(root.left) + rank(root.right, key); }
Delete minimum/maximum key——deleteMin/deleteMax
public void deleteMin() { root = deleteMin(root); } private Node deleteMin(Node root) { if (root.left == null) return root.right; root.left = deleteMin(root.left); root.N = size(root.left) + size(root.right) + 1; return root; }
public void deleteMax() { root = deleteMax(root); } private Node deleteMax(Node root) { if (root.right == null) return root.left; root.right = deleteMax(root.right); root.N = size(root.left) + size(root.right) + 1; return root; }
Delete any key——delete
public void delete(K key) { root = delete(root, key); } private Node delete(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) { if (root.right == null) return root = root.left; if (root.left == null) return root = root.right; Node t = root; root = min(t.right); root.left = t.left; root.right = deleteMin(t.right); } else if (comp < 0) root.left = delete(root.left, key); else root.right = delete(root.right, key); root.N = size(root.left) + size(root.right) + 1; return root; }
In-order print tree——print
public void print() { print(root); } private void print(Node root) { if (root == null) return; print(root.left); System.out.println(root.key); print(root.right); }
The above is the detailed content of Java-Binary Search Tree (BST) algorithm sample code sharing. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

Guide to TimeStamp to Date in Java. Here we also discuss the introduction and how to convert timestamp to date in java along with examples.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
