


Detailed introduction to the difference between character stream and byte stream in Java
This article mainly introduces relevant information that explains the difference between character stream and byte stream in Java. Friends in need can refer to
The difference between character stream and byte stream in Java
1. What is a stream
A stream in Java is an abstraction of a byte sequence. We can imagine a water pipe, but now it flows in the water pipe What's in it is no longer water, but a sequence of bytes. Like water flow, a stream in Java also has a "flow direction". The object from which a byte sequence can usually be read is called an input stream; a byte sequence can be written to it. The object is called an output stream.
2. Byte stream
The most basic unit of byte stream processing in Java is a single byte, which is usually used to process binary data. The two most basic byte stream classes in Java are InputStream and OutputStream, which represent the basic input byte stream and output byte stream respectively. Both the InputStream class and the OutputStream class are abstract classes. In actual use, we usually use a series of their subclasses provided in the Javaclass library. Let's take the InputStream class as an example to introduce the byte stream in Java
The InputStream class defines a basic method read for reading bytes from the byte stream. The definition of this method As follows:
public abstract int read() throws IOException;
This is an abstract method, which means that any input byte stream class derived from InputStream needs to implement this method. The function of this method is to read a word from the byte stream section, if the end is reached, -1 is returned, otherwise the read bytes are returned. What we need to note about this method is that it will block until it returns a read byte or -1. In addition, byte streams do not support caching by default, which means that each time the read method is called, the operating system is requested to read a byte, which is often accompanied by a disk IO, so the efficiency is relatively low. Some friends may think that the overloaded method of read in the InputStream class that takes a byte array as a parameter can read multiple bytes at a time without frequent disk IO. So is this really the case? Let’s take a look at the source code of this method:
public int read(byte b[]) throws IOException { return read(b, 0, b.length); }
It calls another version of the read overload method, so let’s follow up:
public int read(byte b[], int off, int len) throws IOException { if (b == null) { throw new NullPointerException(); } else if (off < 0 || len < 0 || len > b.length - off) { throw new IndexOutOfBoundsException(); } else if (len == 0) { return 0; } int c = read(); if (c == -1) { return -1; } b[off] = (byte)c; int i = 1; try { for (; i < len ; i++) { c = read(); if (c == -1) { break; } b[off + i] = (byte)c; } } catch (IOException ee) { } return i; }
From the above code we can see Yes, in fact, the read(byte[]) method internally reads a byte array "at a time" by calling the read() method in a loop, so essentially this method does not use the memory buffer. To use a memory buffer to improve reading efficiency, we should use BufferedInputStream.
3. Character stream
The most basic unit of character stream processing in Java is the Unicode code unit (size 2 bytes), which is usually used to process text data. The so-called Unicode code element is a Unicode code unit, ranging from 0x0000~0xFFFF. Each number in the above range corresponds to a character. The String type in Java encodes the characters in Unicode rules by default and then stores them in memory. However, unlike storage in memory, data stored on disk usually has various encoding methods. Using different encoding methods, the same characters will have different binary representations. In fact, the character stream works like this:
Output character stream: Convert the character sequence to be written to the file (actually a Unicode code element sequence) into characters in the specified encoding method byte sequence, and then write it to the file;
Input charactersStream: decode the byte sequence to be read into the corresponding character sequence according to the specified encoding method (actually a sequence of Unicode code elements) so that it can be stored in memory.
We use a demo to deepen our understanding of this process. The sample code is as follows:
import java.io.FileWriter; import java.io.IOException; public class FileWriterDemo { public static void main(String[] args) { FileWriter fileWriter = null; try { try { fileWriter = new FileWriter("demo.txt"); fileWriter.write("demo"); } finally { fileWriter.close(); } } catch (IOException e) { e.printStackTrace(); } } }
In the above code, we use FileWriter to write to demo.txt The four characters "demo" are written in, we use the hexadecimal editor WinHex to view the contents of demo.txt:
As can be seen from the picture above, the "demo" we wrote was encoded as "64 65 6D 6F", but we did not explicitly specify the encoding method in the above code. In fact, when we did not specify it, the encoding method was used The default character encoding of the operating system is used to encode the characters we want to write.
Since the character stream actually needs to complete the conversion of the Unicode code element sequence into the byte sequence of the corresponding encoding method before outputting it, it will use the memory buffer to store the converted byte sequence and wait. After the conversion is completed, they are written to the disk file together.
4. The difference between character stream and byte stream
After the above description, we can know that the main differences between byte stream and character stream are reflected in the following aspects:
The basic unit of byte stream operation is word section; the basic unit of character stream operations is the Unicode code element.
Byte streams do not use buffers by default; character streams use buffers.
Byte stream is usually used to process binary data. In fact, it can process any type of data, but it does not support direct writing or reading of Unicode code elements; character stream usually processes text. Data, which supports writing and reading Unicode code elements.
The above is the detailed content of Detailed introduction to the difference between character stream and byte stream in Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
