浅谈Python中的数据类型
数据类型:
float — 浮点数可以精确到小数点后面15位 int — 整型可以无限大 bool — 非零为true,零为false list — 列表
Float/Int:
运算符:
/ — 浮点运算除
// — 当结果为正数时,取整; 11//5 =2; 11//4 = 2
当结果为负数时,向下取整;-11//5=-3; -11//4=-3
当分子分母都是float,结果为float型
** — 计算幂; 11**2 =121
% — 取余
其他数学运算:
1.分数:
import fractions;
fractions.Fraction(1,3) — 1/3
import math;
—math.sin()
—math.cos()
—math.tan()
—math.asin()
math.pi —3.1415926…
math.sin(math.pi/2) — 1.0
math.tan(math.pi/4) — 0.9999999999…
math.sin(); math
List:
创建: a_list = [‘a', ‘b', ‘mpilgrim', ‘z', ‘example']
a_list[-1] — ‘example'
a_list[0] — ‘a'
a_list[1:3] — [‘b', ‘mpilgrim', ‘z']
a_list[:3] — [‘a', ‘b', ‘mpilgrim' ]
a_list[3:] — [‘z', ‘example']
a_list[:]/a_list — [‘a', ‘b', ‘mpilgrim', ‘z', ‘example']
*注:a_list[:] 与a_list 返回的是不同的list,但它们拥有相同的元素
a_list[x:y]— 获取list切片,x指定第一个切片索引开始位置,y指定截止但不包含的切片索引位置。
向list添加元素:
a_list = [‘a']
a_list = a_list + [2.0, 3] — [‘a', 2.0, 3]
a_list.append(True) — [‘a', 2.0, 3, True]
a_list.extend([‘four','Ω']) — [‘a', 2.0, 3, True,'four','Ω']
a_list.insert(0,'Ω') — [‘Ω','a', 2.0, 3, True,'four','Ω']
list其他功能:
a_list = [‘a', ‘b', ‘new', ‘mpilgrim', ‘new']
a_list.count(‘new') — 2
a_list.count(‘mpilgrim') — 1
‘new' in a_list — True
a_list.index(‘new') — 2
a_list.index(‘mpilgrim') — 3
a_list.index(‘c') — through a exception because ‘c' is not in a_list.
del a_list[1] — [‘a', ‘new', ‘mpilgrim', ‘new']
a_list.remove(‘new') — [‘a', mpilgrim', ‘new']
注:remove只删除第一个'new'
a_list.pop() — 'new'/[‘a', mpilgrim' ](删除并返回最后一个元素)
a_list.pop(0) — ‘a' / [‘mpilgrim'] (删除并返回第0个元素)
空列表为假,其他列表为真。
元组(元素是不可变的列表):
定义:与列表的定义相同,除了整个元素的集合用圆括号而,不是方括号闭合
a_tuple = (“a”, “b”, “mpilgrim”, “z”, “example”)
a_tuple = (‘a', ‘b', ‘mpilgrim', ‘z', ‘example')
tuple 只能索引,不能修改。
元组相对于列表的优势:
1.速度快
2.“写保护”,更安全
3.一些元组可以当作字典键??
内置的tuple()函数接受一个列表参数并将列表转化成元组
同理,list()函数将元组转换成列表
同时赋多个值:
v = (‘a',2, True)
(x,y,z) = v — x=‘a', y=2, z=True
range() — 内置函数,进行连续变量赋值
(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday) = range(7)
Monday — 0
Thursday — 3
Sunday — 6
range() — 内置函数range()构建了一个整数序列,range()函数返回一个迭代器。
集合(里面的值是无序的):
创建集合:用逗号分隔每个值,用大括号{}将所有值包括起来。
a_set = {1}
type(a_set) —
以列表为基础创建集合:
a_list = [‘a', ‘b', ‘mpilgrim', True, False, 42]
a_set = set(a_list)
a_set — {‘a', ‘b', ‘mpilgrim', True, False, 42}
a_set = set() — 得到一个空的set
a_dic = {} — 得到一个空的dic
修改集合:
a_set = {1,2}
a_set.add(4) — {1,2,4}
len(a_set) — 3
a_set.add(1) — {1,2,4}
a_set.update({2,4,6}) — {1,2,4,6}
a_set.update({3,6,9}, {1,2,3,5,8,13}) — {1,2,3,4,5,6,8,9,13}
a_set.update([15,16]) — {1,2,3,4,5,6,8,9,13,15,16}
a_set.discard(16) — {1,2,3,4,5,6,8,9,13,15}
a_set.discard(16) — {1,2,3,4,5,6,8,9,13,15}
a_set.remove(15) —{1,2,3,4,5,6,8,9,13}
a_set.remove(15) — through a exception
a_set.pop() — return 1 / {2,3,4,5,6,8,9,13}
注:a_set.pop()随机删掉集合中的某个值并返回该值。
a_set.clear() — set()
a_set.pop() — through exception.
集合的其他运算:
a_set = {2,3,4,5,6,8,9,13}
30 in a_set — False
4 in a_set — True
b_set = {3,4,10,12}
a_set.union(b_set) — 两个集合的并
a_set.intersetion(b_set) — 两个集合的交集
a_set.difference(b_set) — a_set中有但是b_set中没有的元素
a_set.symmetric_difference(b_set) — 返回所有只在一个集合中出现的元素
a_set.issubset(b_set) — 判断a_set是否是b_set的子集
b_set.issuperset(a_set) — 判断b_set是否是a_set的超集
在布尔类型上下文环境中,空集合为假,任何包含一个以上元素的集合为真。
字典(键值对的无序集合):
创建字典:
a_dic = {‘server':'db.diveintopython3.org',
‘databas':'mysql'}
a_dic[‘server'] — ‘db.diveintopython3.org'
a_dic[‘database'] — ‘mysql'
修改字典:
a_dic[‘user'] = ‘mark' — {'user': 'mark', 'server': 'db.diveintopython3.org', 'database': ‘blog'}
a_dic[‘database'] = ‘blog' — {'user': 'mark', 'server': 'db.diveintopython3.org', 'database': ‘blog'}
a_dic[‘user'] = ‘bob' — {'user': 'bob', 'server': 'db.diveintopython3.org', 'database': ‘blog'}
a_dic[‘User'] = ‘mark' — {'user': 'bob', ‘Uuser': 'mark', 'server': 'db.diveintopython3.org', 'database': ‘blog'}
注:1.在字典中不允许有重复的键。对现有键赋值将会覆盖原有值;
2.随时可以添加新的键值对;
3.字典键区分大小写。
混合值字典:
suffixes = { 1000:[‘KB', ‘MB', ‘GB', ‘TB', ‘PB', ‘EB', ‘ZB', ‘YB'],
1024: [‘KiB', ‘MiB', ‘GiB', ‘TiB', ‘PiB' , ‘EiB', ‘ZiB', ‘YiB']}
len(suffixes) — 2
1000 in suffixes — True
suffixes[1024] — [‘KiB', ‘MiB', ‘GiB', ‘TiB', ‘PiB' , ‘EiB', ‘ZiB', ‘YiB']
suffixes[1000][3] — ‘TB'
空字典为假, 所有其他字典为真
以上所述就是本文的全部内容了,希望大家能够喜欢。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
