Home Backend Development C++ Exception handling in C++ technology: How to handle exceptions correctly in a multi-threaded environment?

Exception handling in C++ technology: How to handle exceptions correctly in a multi-threaded environment?

May 09, 2024 pm 12:36 PM
Multithreading c++ Exception handling

In multithreaded C, exception handling follows the following principles: timeliness, thread safety, and clarity. In practice, you can ensure that exception handling code is thread-safe by using mutex or atomic variables. Additionally, consider reentrancy, performance, and testing of your exception handling code to ensure it runs safely and efficiently in a multi-threaded environment.

C++ 技术中的异常处理:如何在多线程环境中正确处理异常?

Multi-threaded exception handling in C

Exception handling is a mechanism for handling runtime errors that enables developers to Ability to handle unforeseen exceptions gracefully during program execution. In a multi-threaded environment, exception handling becomes more complex because multiple threads are running at the same time and multiple exceptions may occur at the same time.

Principles of exception handling

  • Timeliness: Handle exceptions immediately when they occur to prevent exceptions from propagating to other threads.
  • Thread safety: The exception handling code itself should be thread-safe to avoid the problem of multiple threads accessing the same exception handler.
  • Clarity: Clearly specify the circumstances under which exceptions are handled, and avoid catching too many or too few exceptions.

Practical Case

Consider the following multi-threaded C program:

#include <iostream>
#include <thread>
#include <vector>

std::vector<int> data(100);

void thread_function(int start, int end) {
    try {
        for (int i = start; i < end; ++i) {
            // 处理数据项
            std::cout << data[i] << std::endl;
        }
    } catch (const std::exception& e) {
        // 处理异常
        std::cerr << "Exception occurred: " << e.what() << '\n';
    }
}

int main() {
    // 创建工作窃取线程池
    std::vector<std::thread> threads;
    for (int i = 0; i < 4; ++i) {
        threads.push_back(std::thread(thread_function, 25 * i, 25 * (i + 1)));
    }

    // 加入所有线程
    for (auto& thread : threads) {
        thread.join();
    }

    return 0;
}
Copy after login

In this program, we create a work-stealing thread pool , where each thread processes a subset of 25 elements in the data array. To simulate exceptions, we raise exceptions during processing of array items.

Thread-safe exception handler

To ensure that the exception handling code is thread-safe, we can use mutex or atomic variables to protect shared resources. For example, the following code uses the atomic flag to ensure that only the first exception encountered is handled and other exceptions are ignored:

std::atomic_bool exception_handled = false;

void thread_function(int start, int end) {
    try {
        for (int i = start; i < end; ++i) {
            // 处理数据项
            std::cout << data[i] << std::endl;
        }
    } catch (const std::exception& e) {
        // 处理异常
        if (!exception_handled.exchange(true)) {
            std::cerr << "Exception occurred: " << e.what() << '\n';
        }
    }
}
Copy after login

Additional considerations

In addition to the above principles, the following additional factors need to be considered when handling exceptions in a multi-threaded environment:

  • Reentrancy: Exception handling code should be reentrant because Multiple threads may encounter exceptions at the same time.
  • Performance: Exception handling may affect performance, so exception handling should be used only when needed.
  • Testing: It is critical to thoroughly test exception handling code to ensure its correctness.

Following these principles and considerations can ensure safe and efficient exception handling in multi-threaded C applications, preventing exceptions from causing program crashes or data corruption.

The above is the detailed content of Exception handling in C++ technology: How to handle exceptions correctly in a multi-threaded environment?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

How do you handle exceptions effectively in PHP (try, catch, finally, throw)? How do you handle exceptions effectively in PHP (try, catch, finally, throw)? Apr 05, 2025 am 12:03 AM

In PHP, exception handling is achieved through the try, catch, finally, and throw keywords. 1) The try block surrounds the code that may throw exceptions; 2) The catch block handles exceptions; 3) Finally block ensures that the code is always executed; 4) throw is used to manually throw exceptions. These mechanisms help improve the robustness and maintainability of your code.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

See all articles