Home Backend Development Golang Concurrency performance optimization practice in Go language

Concurrency performance optimization practice in Go language

May 07, 2024 pm 04:48 PM
go language Optimization practice concurrent access Concurrency performance optimization

Practice of optimizing the concurrency performance of Go language include: establishing Goroutine pool to avoid goroutine creation/destruction overhead. Optimize channel usage and avoid blocking operations to improve responsiveness. Use read-write locks to reduce lock contention and improve shared resource access efficiency. Leverage Context to propagate cancellation and deadline information within goroutines to handle cancellation requests gracefully. Significantly improve request processing speed by processing HTTP requests in parallel through goroutines.

Concurrency performance optimization practice in Go language

Concurrency performance optimization practice in Go language

Concurrency is an effective method to improve program performance, but if you do not pay attention to optimization, It may also cause performance degradation. This article introduces how to apply concurrency optimization practices in Go language and provides practical cases.

Goroutine Pool

goroutine pool avoids the overhead of frequently creating and destroying goroutines. Throughput can be improved by creating a pool of pre-allocated goroutines.

type Job struct {
    task func()
}

func main() {
    pool := make(chan Job, 100)
    for i := 0; i < 100; i++ {
        go func(i int) {
            for {
                job, ok := <-pool
                if !ok {
                    return
                }
                job.task()
            }
        }(i)
    }

    // 向池中提交任务
    for j := 0; j < 100000; j++ {
        pool <- Job{
            task: func() { time.Sleep(500 * time.Microsecond) },
        }
    }

    //关闭池
    close(pool)
}
Copy after login

Channel optimization

Channel is an important mechanism for communication between goroutines. Optimizing channels can improve the efficiency of data transfer.

Avoid using blocking operations: Using non-blocking operations (such as Select or Timeout) can improve the responsiveness of the program.

select {
case value := <-chan:
    // 处理 value
default:
    // 通道为空,执行其他任务
}
Copy after login

Lock optimization

Locks are used to protect shared resources, but excessive use of locks can lead to deadlocks or performance degradation.

Use read-write locks: Read-write locks allow multiple read operations to access concurrently, while write operations have exclusive access to resources, which can reduce lock contention.

import "sync"

var rwmu sync.RWMutex

func main() {
    rwmu.RLock()
    // 并发读操作
    rwmu.RUnlock()

    rwmu.Lock()
    // 写操作
    rwmu.Unlock()
}
Copy after login

Context

Context provides a way to propagate cancellation and deadline information in goroutines. Use Context to handle cancellation requests gracefully and avoid wasting resources.

import "context"

func main() {
    ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
    defer cancel()

    go func() {
        for {
            select {
            case <-ctx.Done():
                return
            default:
                // 执行任务
            }
        }
    }()
}
Copy after login

Practical case

Parallel HTTP request

By using goroutine to process HTTP requests concurrently, the request processing speed can be significantly improved .

import (
    "net/http"
    "time"
)

func main() {
    client := &http.Client{
        Timeout: 10 * time.Second,
    }

    urls := []string{"https://example.com", "https://example2.com", "https://example3.com"}

    var wg sync.WaitGroup
    for _, url := range urls {
        wg.Add(1)
        go func(url string) {
            defer wg.Done()
            resp, err := client.Get(url)
            if err != nil {
                // 处理错误
                return
            }
            _ = resp.Body.Close() // 确保关闭连接
        }(url)
    }
    wg.Wait()
}
Copy after login

By applying these optimization practices, the concurrency performance of Go language programs can be significantly improved and the potential of the program can be released.

The above is the detailed content of Concurrency performance optimization practice in Go language. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1655
14
PHP Tutorial
1252
29
C# Tutorial
1226
24
How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? Apr 02, 2025 pm 04:54 PM

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

What should I do if the custom structure labels in GoLand are not displayed? What should I do if the custom structure labels in GoLand are not displayed? Apr 02, 2025 pm 05:09 PM

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

In Go, why does printing strings with Println and string() functions have different effects? In Go, why does printing strings with Println and string() functions have different effects? Apr 02, 2025 pm 02:03 PM

The difference between string printing in Go language: The difference in the effect of using Println and string() functions is in Go...

What is the difference between `var` and `type` keyword definition structure in Go language? What is the difference between `var` and `type` keyword definition structure in Go language? Apr 02, 2025 pm 12:57 PM

Two ways to define structures in Go language: the difference between var and type keywords. When defining structures, Go language often sees two different ways of writing: First...

Does mysql optimize lock tables Does mysql optimize lock tables Apr 08, 2025 pm 01:51 PM

MySQL uses shared locks and exclusive locks to manage concurrency, providing three lock types: table locks, row locks and page locks. Row locks can improve concurrency, and use the FOR UPDATE statement to add exclusive locks to rows. Pessimistic locks assume conflicts, and optimistic locks judge the data through the version number. Common lock table problems manifest as slow querying, use the SHOW PROCESSLIST command to view the queries held by the lock. Optimization measures include selecting appropriate indexes, reducing transaction scope, batch operations, and optimizing SQL statements.

When using sql.Open, why does not report an error when DSN passes empty? When using sql.Open, why does not report an error when DSN passes empty? Apr 02, 2025 pm 12:54 PM

When using sql.Open, why doesn’t the DSN report an error? In Go language, sql.Open...

See all articles