


C++ Concurrent Programming: How to do thread termination and cancellation?
Thread termination and cancellation mechanisms in C include: Thread termination: std::thread::join() blocks the current thread until the target thread completes execution; std::thread::detach() detaches the target thread from thread management. Thread cancellation: std::thread::request_termination() requests the target thread to terminate execution; std::thread::get_id() obtains the target thread ID and can be used with std::terminate() to immediately terminate the target thread. In practice, request_termination() allows the thread to decide the timing of termination, and join() ensures that the worker thread completes execution before the main thread exits. Note that thread cancellation is not always respected, and terminating a thread may lead to undefined behavior.
#C Concurrent Programming: How to perform thread termination and cancellation?
In multi-threaded applications, thread termination and cancellation are critical operations when a specific thread or its task is no longer needed. C provides multiple mechanisms to implement thread termination and cancellation:
Thread termination
- ##std::thread::join()
: Block the current thread until the target thread completes execution.
- std::thread::detach()
: Detach the target thread from thread management. The thread will continue executing but can no longer be accessed through its
std::threadobject.
Thread cancellation
- ##std::thread::request_termination()
- : Request the target thread to terminate execution. The thread can decide whether to honor this request.
- : Get the ID of the target thread, which can be passed to the
std::terminate()
function. This immediately terminates the target thread.
Consider an example where two threads are created: the main thread and the worker thread. The worker thread executes an infinite loop while the main thread waits for user input and then terminates the worker thread:
#include <iostream> #include <thread> void work_thread() { while (true) { // 无限循环 } } int main() { std::thread worker(work_thread); std::cout << "按回车键终止工作线程:" << std::endl; std::cin.get(); worker.request_termination(); worker.join(); return 0; }
##request_termination()
- Allow worker threads to decide when to terminate themselves.
-
join()
Ensures that the worker thread completes execution before the main thread exits.
Thread cancellation is not always respected, especially if the thread performs a critical section or other uninterruptible operation.
- Terminating a thread may cause undefined behavior, so use with caution.
The above is the detailed content of C++ Concurrent Programming: How to do thread termination and cancellation?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version
