


The wonderful use of recursion in C++ data structures: implementation of stacks and trees
Application of recursion in C data structures: Stack: Stack is implemented recursively through the last-in-first-out (LIFO) structure. Tree: Tree is implemented recursively through a hierarchical structure, supporting operations such as insertion and depth calculation. Recursion provides a concise and efficient solution for processing nested structures, making the implementation of data structures more intuitive and easier to maintain.
The wonderful use of recursion in C data structures: the implementation of stacks and trees
Recursion is a powerful programming technology. It allows functions to call themselves to solve problems. Recursion is very useful in the implementation of data structures, especially for processing tree structures and linear structures.
Recursive implementation of the stack
The stack is a last-in-first-out (LIFO) data structure. We can use recursion to implement the stack, as shown below:
struct Node { int data; Node* next; }; class Stack { private: Node* head; public: void push(int data) { head = new Node{data, head}; } int pop() { if (head == nullptr) { throw exception("Stack is empty"); } int data = head->data; head = head->next; return data; } bool empty() { return head == nullptr; } };
Practical case: printing linked list in reverse order
void printLinkedListInReverseOrder(Node* head) { if (head == nullptr) { return; } printLinkedListInReverseOrder(head->next); cout << head->data << " "; }
Recursive implementation of tree
Tree is a hierarchical data structure. We can use recursion to implement the tree, as shown below:
struct Node { int data; vector<Node*> children; }; class Tree { private: Node* root; public: void insert(int data) { if (root == nullptr) { root = new Node{data, {}}; } else { insertHelper(root, data); } } private: void insertHelper(Node* node, int data) { for (auto& child : node->children) { if (child == nullptr) { child = new Node{data, {}}; return; } } node->children.push_back(new Node{data, {}}); } void printTree() { printTreeHelper(root); } private: void printTreeHelper(Node* node) { cout << node->data << " "; for (auto& child : node->children) { printTreeHelper(child); } } };
Practical case: Calculate the depth of the binary tree
int calculateTreeDepth(Node* root) { if (root == nullptr) { return 0; } int maxDepth = 0; for (auto& child : root->children) { maxDepth = max(maxDepth, calculateTreeDepth(child)); } return maxDepth + 1; }
Through recursion, we can implement the stack and sum simply and efficiently Key data structures such as trees. Recursion provides powerful tools for processing complex nested structures, making the implementation of data structures more intuitive and easier to maintain.
The above is the detailed content of The wonderful use of recursion in C++ data structures: implementation of stacks and trees. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Executing code in VS Code only takes six steps: 1. Open the project; 2. Create and write the code file; 3. Open the terminal; 4. Navigate to the project directory; 5. Execute the code with the appropriate commands; 6. View the output.

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version
