


C++ recursion practical experience sharing: summary of code optimization and skills
Recursion optimization techniques: Tail recursion optimization: The compiler performs all calculations before the function itself is called to improve efficiency. Memory: Stores previously calculated outputs to avoid repeated calculations. Iteration: Use iteration algorithm instead of recursion to improve readability and avoid stack overflow.
C Sharing of practical experience with recursion: summary of code optimization and techniques
In actual development, recursion is often used to solve complex problems question. It allows functions to call themselves, creating nested call stacks. However, excessive recursive calls may cause stack overflow and program crash.
The following are some tips for optimizing recursive code, with practical cases:
1. Tail recursion optimization
Tail recursion means that the function is All calculations are performed before calling itself, and calling itself is the last action of the function. For tail recursive calls, the compiler can optimize it by replacing the function pointer in the call stack instead of pushing a new stack frame.
int factorial(int n) { return n == 0 ? 1 : n * factorial(n - 1); }
By using the tail-call optimization flag, the compiler can recognize this recursion as tail recursion and optimize it.
int factorial(int n) __attribute__ ((tailcall));
2. Memory
Memory is a technique used to store the output of the same input presented previously. When recursion keeps repeating the same computation, memoization can significantly improve performance.
int fib(int n) { static std::map<int, int> memo; if (memo.count(n) > 0) { return memo[n]; } return memo[n] = n < 2 ? n : fib(n - 1) + fib(n - 2); }
This code uses std::map
3. Iteration
In some cases, recursive problems can be replaced by iterative algorithms. Doing so avoids the risk of stack overflow and improves code readability.
int factorial(int n) { int result = 1; while (n > 0) { result *= n--; } return result; }
This code calculates the factorial iteratively instead of using recursion.
Practical Case
Fibonacci Sequence
Calculating the Fibonacci number at a given index can be done as A classic practical case of recursion. The recursive implementation using memoization is as follows:
int fib(int n) { static std::map<int, int> memo; if (memo.count(n) > 0) { return memo[n]; } return memo[n] = n < 2 ? n : fib(n - 1) + fib(n - 2); }
Using this code, we can efficiently calculate large Fibonacci numbers without worrying about stack overflow.
The above is the detailed content of C++ recursion practical experience sharing: summary of code optimization and skills. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version
