


Detailed explanation of C++ function inheritance: How to avoid the 'diamond inheritance' problem?
Diamond inheritance problem: The problem that occurs when a derived class inherits the same function from multiple base classes at the same time cannot determine which function version to call. Solution: Virtual inheritance: Create a virtual table pointer of the base class to ensure that function calls always point to the most specific base class implementation. Practical case: The Cylinder class inherits from Circle and Rectangle, uses virtual inheritance to avoid diamond inheritance, and ensures that the getArea() function implementation of the Cylinder class is always called.
Detailed explanation of C function inheritance: dealing with "diamond inheritance"
Introduction
Function inheritance is a powerful feature in C that allows derived classes to access and reuse functions of a base class. However, when multiple base classes have the same functions, a problem called "diamond inheritance" can arise. This article will discuss diamond inheritance and its solutions, and provide practical cases.
Diamond inheritance
Diamond inheritance occurs when a derived class inherits the same function from two or more base classes at the same time. This results in the inability to determine which function version was called in the derived class.
class Base1 { public: void print() { std::cout << "Base1 print" << std::endl; } }; class Base2 { public: void print() { std::cout << "Base2 print" << std::endl; } }; class Derived : public Base1, public Base2 { public: void print() { // 调用哪个基类的 print() 函数? } };
In the above example, the Derived
class inherits from Base1
and Base2
, both base classes have the same print()
function. When Derived::print()
is called, it cannot be determined whether Base1::print()
or Base2::print()
is called.
Avoid diamond inheritance
A common solution to avoid diamond inheritance is to use virtual inheritance. Virtual inheritance creates a vtable pointer to the base class instead of copying the base class object. This ensures that function calls to a derived class always point to the most specific base class implementation.
class Base1 { public: virtual void print() { std::cout << "Base1 print" << std::endl; } }; class Base2 { public: virtual void print() { std::cout << "Base2 print" << std::endl; } }; class Derived : public virtual Base1, public virtual Base2 { public: void print() override { std::cout << "Derived print" << std::endl; } };
In the above example, Base1
and Base2
use virtual inheritance. This ensures that Derived::print()
will always call the implementation of the Derived
class.
Practical case
Consider an example of calculating the area of a graphic. We have a base class Shape
that defines the getArea()
function for calculating area. We also have two derived classes, Circle
and Rectangle
, which provide shape-specific area calculations.
class Shape { public: virtual double getArea() = 0; }; class Circle : public Shape { public: Circle(double radius) : _radius(radius) {} double getArea() override { return 3.14 * _radius * _radius; } private: double _radius; }; class Rectangle : public Shape { public: Rectangle(double width, double height) : _width(width), _height(height) {} double getArea() override { return _width * _height; } private: double _width; double _height; };
To implement the "sleeve" shape, we created a derived class Cylinder
, which inherits from Circle
and Rectangle
. However, since both Circle
and Rectangle
have getArea()
functions, Cylinder
will face diamond inheritance issues.
class Cylinder : public Circle, public Rectangle { public: Cylinder(double radius, double height) : Circle(radius), Rectangle(radius, height) {} };
To avoid diamond inheritance, we use virtual inheritance:
class Cylinder : public virtual Circle, public virtual Rectangle { public: Cylinder(double radius, double height) : Circle(radius), Rectangle(radius, height) {} };
Now, the getArea()
function of the Cylinder
class is always called on its derived The implementation of the most specific class (i.e. Cylinder
).
The above is the detailed content of Detailed explanation of C++ function inheritance: How to avoid the 'diamond inheritance' problem?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version
