


Discuss the underlying implementation of C++ function memory allocation and destruction
C The underlying implementation of function memory allocation and destruction is as follows: Memory allocation: Call the new operator to allocate stack frames on the stack and store local variables and function call information. Memory destruction: When the function returns, release the stack frame and its stored local variables; call the delete operator to release the memory allocated by new.
The underlying implementation of C function memory allocation and destruction
Memory allocation
When a function is called, it requires a stack frame to Store its local variables and function call information. A stack frame is an area of memory allocated on the stack when a function is called.
In C, memory is allocated by the new
operator. new
The operator returns a pointer to the allocated memory.
int* p = new int; // 分配一个 int 变量
Memory destruction
When a function returns, its stack frame is released. This also releases local variables stored in the stack frame.
Memory in C is released by the delete
operator. The delete
operator releases the memory allocated by new
.
delete p; // 释放之前分配的 int 变量
Practical example
Consider the following code snippet:
void foo() { int* p = new int; *p = 10; return; } int main() { foo(); return 0; }
In this example, the foo
function allocates an int
variable and set its value to 10. When the foo
function returns, the memory pointed to by p
will be released.
However, the memory pointed to by p
is not released in the main
function. This can cause memory leaks.
In order to solve this problem, you can call the delete
operator in the main
function to release the memory pointed to by p
.
int main() { foo(); delete p; // 释放 foo() 中分配的内存 return 0; }
The above is the detailed content of Discuss the underlying implementation of C++ function memory allocation and destruction. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Executing code in VS Code only takes six steps: 1. Open the project; 2. Create and write the code file; 3. Open the terminal; 4. Navigate to the project directory; 5. Execute the code with the appropriate commands; 6. View the output.
