Home Backend Development C++ What are the applications of C++ function pointers in virtual methods and virtual tables?

What are the applications of C++ function pointers in virtual methods and virtual tables?

Apr 17, 2024 pm 06:00 PM
c++ function pointer virtual method virtual table

C The function pointer is used in the virtual method to store the pointer to the overridden method implementation of the derived class, and in the virtual table to initialize the virtual table and store the pointer to the virtual method implementation, thereby achieving runtime polymorphism and allowing derivation. The class overrides the virtual method in the base class and calls the correct implementation based on the actual type of the object at runtime.

C++ 函数指针在虚拟方法和虚表中的应用有哪些?

C function pointer: application of virtual methods and virtual tables

In C, function pointers are used in implementing virtual methods and maintaining Virtual tables play a vital role. This article will delve into these applications and deepen understanding through practical cases.

Virtual method

Virtual method is a member function declared in the base class and overridden by the derived class. When a virtual method is called through a base class pointer, the derived class's implementation is called based on the actual type of the runtime object.

In order to implement virtual methods, the compiler creates a virtual function table (vtable) for each base class, which stores pointers to the implementation of each virtual method. When a virtual method is called, the compiler uses the object's vtable to find and call the correct implementation.

Application of function pointers in virtual methods

Function pointers are used to store pointers to virtual method implementations in vtables. The compiler allocates a vtable entry for each virtual method and populates it with a function pointer pointing to the method's implementation.

For example:

class Base {
public:
    virtual void print() {
        cout << "Base::print" << endl;
    }
};

class Derived : public Base {
public:
    virtual void print() override {
        cout << "Derived::print" << endl;
    }
};

int main() {
    Base* base = new Derived;
    base->print(); // 输出 "Derived::print"
}
Copy after login

In this example, the compiler creates a vtable with two entries in it. The first entry points to the implementation of the print() method in the base class Base, and the second entry points to the overridden print in the derived class Derived () Implementation of method. When base->print() is executed, the compiler uses the vtable to obtain the appropriate function pointer and calls the corresponding implementation.

Virtual table

A virtual table is a data structure used to store function pointers pointing to virtual method implementations. Each entry in the virtual table corresponds to a virtual method declared in the base class.

Application of function pointers in virtual tables

Function pointers are used to initialize the virtual table and store pointers to virtual method implementations. When the compiler detects that a class contains virtual methods, it generates a vtable for the class. The type of each entry in the virtual table is a function pointer corresponding to the method's return type.

In the previous example, the compiler will generate a virtual table containing two entries for the base class Base:

vtable[Base] = {
    Base::print,
    Derived::print
};
Copy after login

Practical case

Let us further understand the application of function pointers in virtual methods and virtual tables through a real-world example. Let's create a simple shape drawing library:

class Shape {
public:
    virtual void draw() = 0;
};

class Circle : public Shape {
public:
    virtual void draw() override {
        cout << "Drawing a circle..." << endl;
    }
};

class Square : public Shape {
public:
    virtual void draw() override {
        cout << "Drawing a square..." << endl;
    }
};

int main() {
    vector<Shape*> shapes;
    shapes.push_back(new Circle);
    shapes.push_back(new Square);

    for (auto shape : shapes) {
        shape->draw();
    }
}
Copy after login

In this example, the Shape class is the base class, while the Circle and Square Is a derived class. The draw() method is a virtual method and is overridden by each derived class. The compiler creates a vtable for the Shape class that contains function pointers to each derived class's implementation of the draw() method.

When shape->draw() is called, the compiler uses the object's vtable to obtain the appropriate function pointer and calls the correct implementation. This allows us to draw different types of shapes through a unified Shape interface without the need for explicit conversions.

The above is the detailed content of What are the applications of C++ function pointers in virtual methods and virtual tables?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Do you use c in visual studio code Do you use c in visual studio code Apr 15, 2025 pm 08:03 PM

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is

How to use VSCode How to use VSCode Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages ​​and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

See all articles