Home Backend Development Python Tutorial Breaking the shackles of the GIL: Unlocking the unlimited potential of Python concurrent programming

Breaking the shackles of the GIL: Unlocking the unlimited potential of Python concurrent programming

Mar 02, 2024 pm 04:20 PM

粉碎 GIL 的枷锁:解锁 Python 并发编程的无限潜力

GIL'S SHOKES

The global interpreter

Lock (GIL) in python is a mechanism that ensures that each thread only executes one Python# at a time ## directive. While this prevents data races, it also limits Python's concurrency capabilities because it prevents multiple CPU cores from executing Python code simultaneously.

How to release GIL

There are several ways to unlock the GIL and unleash Python’s concurrency potential:

1. Multi-process:

Multi-process creates multiple independent processes, each process has its own GIL. This allows multiple Python programs to be executed in parallel, maximizing CPU utilization.

import multiprocessing

def task(n):
for i in range(n):
print(f"Process {multiprocessing.current_process().name}: {i}")

if __name__ == "__main__":
jobs = []
for i in range(5):
p = multiprocessing.Process(target=task, args=(1000000,))
jobs.append(p)
p.start()

for j in jobs:
j.join()
Copy after login

2. Thread:

Threads are a more lightweight unit of concurrency than processes and do not require duplication of the entire Python interpreter. However, they are still bound by the GIL and therefore can only execute Python code in parallel on different CPU cores.

import threading

def task(n):
for i in range(n):
print(f"Thread {threading.current_thread().name}: {i}")

if __name__ == "__main__":
threads = []
for i in range(5):
t = threading.Thread(target=task, args=(1000000,))
threads.append(t)
t.start()

for t in threads:
t.join()
Copy after login

3. Asynchronous programming:

Asynchronous

ProgrammingUse non-blocking I/O operations to allow Python programs to perform other tasks while the GIL is released. This works with the event loop to handle incoming events without blocking execution.

import asyncio

async def task(n):
for i in range(n):
print(f"Coroutine {i}: {i}")

async def main():
tasks = [task(1000000) for _ in range(5)]
await asyncio.gather(*tasks)

if __name__ == "__main__":
asyncio.run(main())
Copy after login

Choose the appropriate method

Selecting the most appropriate method to lift the GIL depends on the needs of the specific application. For tasks requiring maximum parallelism for intensive computing, multiprocessing is the best choice. Threads are a good choice if you need to perform I/O-intensive tasks in parallel on different CPU cores. Asynchronous programming is ideal for applications that require non-blocking I/O operations.

in conclusion

By lifting the shackles of the GIL, Python

developers can unleash the concurrency potential of Python, thereby improving application performance and throughput. By leveraging multi-process, thread, and asynchronous programming techniques, Python programmers can create concurrent applications that can execute on multiple CPU cores simultaneously. This makes Python a more attractive choice for a variety of concurrent programming scenarios.

The above is the detailed content of Breaking the shackles of the GIL: Unlocking the unlimited potential of Python concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1663
14
PHP Tutorial
1264
29
C# Tutorial
1237
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles