Practical tips for parsing Python command line parameters
Practical tips for parsing Python command line parameters
When writing scripts in Python, you often need to obtain parameters from the command line. Python's built-in argparse
module provides a simple and powerful tool for command line argument parsing. This article will introduce the basic usage of argparse
and provide some practical tips and code examples.
Basic usage
First, you need to import the argparse
module:
import argparse
Then, you can create an argparse.ArgumentParser
object to Parsing command line parameters:
parser = argparse.ArgumentParser(description='命令行参数解析示例')
description
parameter is used to provide a brief description for display in the help message.
Next, you can add different command line arguments to the ArgumentParser
object. For example, adding a positional parameter:
parser.add_argument('input_file', help='输入文件路径')
This creates a positional parameter named input_file
that specifies the path to the input file.
To provide more flexibility, optional parameters can be added. For example, add a --output
parameter to specify the path of the output file:
parser.add_argument('--output', help='输出文件路径')
Use the long parameter form --output
, you can also use the short The word form, such as -o
. To add the short form of an argument, you can add -o
to the argument's dest
argument:
parser.add_argument('-o', '--output', help='输出文件路径')
Then, you can use parse_args()
Method to parse command line parameters:
args = parser.parse_args()
The parsing results will be saved in the args
object. These values can be accessed through the object's properties:
print(args.input_file) print(args.output)
For positional parameters, you can use the nargs
parameter to specify that multiple values are accepted. For example, to accept multiple input file paths, you can use nargs=' '
:
parser.add_argument('input_files', nargs='+', help='输入文件路径')
Practical Tips
1. Adding a default value
works Provide default values for parameters. For example, to set the default value of the --output
parameter to output.txt
:
parser.add_argument('--output', default='output.txt', help='输出文件路径')
If --output## is not specified on the command line #parameter, the default value will be used.
choices parameter to specify that a parameter can only accept specific values:
parser.add_argument('--mode', choices=['A', 'B', 'C'], help='运行模式')
--mode parameter is
A,
B or
C will be accepted.
add_mutually_exclusive_group() method. For example, to ensure that only one of the
--input and
--output parameters can be selected, you can do this:
group = parser.add_mutually_exclusive_group() group.add_argument('--input', help='输入文件路径') group.add_argument('--output', help='输出文件路径')
subparsers. For example, assuming you want your script to have a
run subcommand and a
test subcommand, you can do this:
subparsers = parser.add_subparsers(dest='command') run_parser = subparsers.add_parser('run', help='运行程序') run_parser.add_argument('--input', help='输入文件路径') test_parser = subparsers.add_parser('test', help='测试程序') test_parser.add_argument('--input', help='输入文件路径')
args.command determines which subcommand to use.
import argparse def main(args): print('输入文件:', args.input_file) print('输出文件:', args.output) if args.input_files: print('输入文件列表:', args.input_files) if args.mode: print('运行模式:', args.mode) if args.command == 'run': print('运行程序') elif args.command == 'test': print('测试程序') if __name__ == '__main__': parser = argparse.ArgumentParser(description='命令行参数解析示例') parser.add_argument('input_file', help='输入文件路径') parser.add_argument('--output', default='output.txt', help='输出文件路径') parser.add_argument('-o', '--output', help='输出文件路径') parser.add_argument('input_files', nargs='+', help='输入文件路径') parser.add_argument('--mode', choices=['A', 'B', 'C'], help='运行模式') subparsers = parser.add_subparsers(dest='command') run_parser = subparsers.add_parser('run', help='运行程序') run_parser.add_argument('--input', help='输入文件路径') test_parser = subparsers.add_parser('test', help='测试程序') test_parser.add_argument('--input', help='输入文件路径') args = parser.parse_args() main(args)
argparse Provides a flexible and powerful way to parse command line arguments and can be customized according to the needs of the application. Using
argparse, you can easily handle various complex command line parameters and improve the scalability and ease of use of your scripts.
The above is the detailed content of Practical tips for parsing Python command line parameters. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code
