Table of Contents
Basic usage
Practical Tips
1. Adding a default value
Home Backend Development Python Tutorial Practical tips for parsing Python command line parameters

Practical tips for parsing Python command line parameters

Feb 03, 2024 am 08:30 AM
Command line parameter parsing command line parser

Practical tips for parsing Python command line parameters

Practical tips for parsing Python command line parameters

When writing scripts in Python, you often need to obtain parameters from the command line. Python's built-in argparse module provides a simple and powerful tool for command line argument parsing. This article will introduce the basic usage of argparse and provide some practical tips and code examples.

Basic usage

First, you need to import the argparse module:

import argparse
Copy after login

Then, you can create an argparse.ArgumentParser object to Parsing command line parameters:

parser = argparse.ArgumentParser(description='命令行参数解析示例')
Copy after login

description parameter is used to provide a brief description for display in the help message.

Next, you can add different command line arguments to the ArgumentParser object. For example, adding a positional parameter:

parser.add_argument('input_file', help='输入文件路径')
Copy after login

This creates a positional parameter named input_file that specifies the path to the input file.

To provide more flexibility, optional parameters can be added. For example, add a --output parameter to specify the path of the output file:

parser.add_argument('--output', help='输出文件路径')
Copy after login

Use the long parameter form --output, you can also use the short The word form, such as -o. To add the short form of an argument, you can add -o to the argument's dest argument:

parser.add_argument('-o', '--output', help='输出文件路径')
Copy after login

Then, you can use parse_args()Method to parse command line parameters:

args = parser.parse_args()
Copy after login

The parsing results will be saved in the args object. These values ​​can be accessed through the object's properties:

print(args.input_file)
print(args.output)
Copy after login

For positional parameters, you can use the nargs parameter to specify that multiple values ​​are accepted. For example, to accept multiple input file paths, you can use nargs=' ':

parser.add_argument('input_files', nargs='+', help='输入文件路径')
Copy after login

Practical Tips

1. Adding a default value

works Provide default values ​​for parameters. For example, to set the default value of the --output parameter to output.txt:

parser.add_argument('--output', default='output.txt', help='输出文件路径')
Copy after login

If --output## is not specified on the command line #parameter, the default value will be used.

2. Add restrictions

You can add restrictions to parameters. For example, you can use the

choices parameter to specify that a parameter can only accept specific values:

parser.add_argument('--mode', choices=['A', 'B', 'C'], help='运行模式')
Copy after login

Only when the value of the

--mode parameter is A, B or C will be accepted.

3. Add mutually exclusive parameters

Sometimes, you need to ensure that certain parameters are mutually exclusive. A mutually exclusive parameter group can be created using the

add_mutually_exclusive_group() method. For example, to ensure that only one of the --input and --output parameters can be selected, you can do this:

group = parser.add_mutually_exclusive_group()
group.add_argument('--input', help='输入文件路径')
group.add_argument('--output', help='输出文件路径')
Copy after login

4. Add subcommand

Sometimes, you may want to add multiple subcommands to the script. This can be achieved using

subparsers. For example, assuming you want your script to have a run subcommand and a test subcommand, you can do this:

subparsers = parser.add_subparsers(dest='command')

run_parser = subparsers.add_parser('run', help='运行程序')
run_parser.add_argument('--input', help='输入文件路径')

test_parser = subparsers.add_parser('test', help='测试程序')
test_parser.add_argument('--input', help='输入文件路径')
Copy after login

Then, after parsing the command line parameters, you can The value of

args.command determines which subcommand to use.

Sample code

The following is a sample code that demonstrates the techniques and usage mentioned above:

import argparse

def main(args):
    print('输入文件:', args.input_file)
    print('输出文件:', args.output)

    if args.input_files:
        print('输入文件列表:', args.input_files)

    if args.mode:
        print('运行模式:', args.mode)

    if args.command == 'run':
        print('运行程序')
    elif args.command == 'test':
        print('测试程序')

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='命令行参数解析示例')

    parser.add_argument('input_file', help='输入文件路径')
    parser.add_argument('--output', default='output.txt', help='输出文件路径')
    parser.add_argument('-o', '--output', help='输出文件路径')
    parser.add_argument('input_files', nargs='+', help='输入文件路径')
    parser.add_argument('--mode', choices=['A', 'B', 'C'], help='运行模式')

    subparsers = parser.add_subparsers(dest='command')

    run_parser = subparsers.add_parser('run', help='运行程序')
    run_parser.add_argument('--input', help='输入文件路径')

    test_parser = subparsers.add_parser('test', help='测试程序')
    test_parser.add_argument('--input', help='输入文件路径')

    args = parser.parse_args()
    main(args)
Copy after login
The above is an introduction to practical techniques for Python command line parameter parsing and Sample code.

argparse Provides a flexible and powerful way to parse command line arguments and can be customized according to the needs of the application. Using argparse, you can easily handle various complex command line parameters and improve the scalability and ease of use of your scripts.

The above is the detailed content of Practical tips for parsing Python command line parameters. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles