Table of Contents
The traditional model-centered AI method is the main way of machine learning development. Its core idea is to improve the performance of the model through continuous iteration to generate the best model to handle the given data set. Researchers and engineers spend a lot of time fine-tuning the parameters, number of layers, and other architectural elements of the model. However, because building and fine-tuning models has been a complex and resource-intensive process in the past, requiring deep expertise to produce meaningful results, data has often been treated as a secondary factor. However, in recent years, with the advancement of machine learning technology and the enhancement of computing power, the importance of data has gradually been emphasized. Modern AI methods pay more attention to the quality and diversity of data, training models through larger data sets and more powerful computing power, thereby improving the performance and generalization capabilities of the model. This data-centric approach has become the current mainstream trend in the field of machine learning.
A data-centric approach improves the quality of data for model training, including cleaning, enhancing and ensuring that the data represents real-world scenarios.
By shifting to a data-centric approach to AI that ensures data quality and relevance, organizations can gain the following benefits:
One of the typical benefits of a data-centric approach is the ability to deliver experiences that are tightly integrated with real-world scenarios. Unlike model-centric approaches where models often struggle with the fallacies of low-quality data, data-centric artificial intelligence (AI) seeks to bridge the gap between AI models and the dynamic reality they are trying to navigate.
Mitigating the Shadow of Illusions
Unleashing the full potential of predictive and generative AI
Leading the future of AI evolution with data
Blending the best of both
Home Technology peripherals AI The artificial intelligence paradigm shifts from model-centric to data-centric

The artificial intelligence paradigm shifts from model-centric to data-centric

Feb 01, 2024 pm 11:18 PM
AI data Model

The artificial intelligence paradigm shifts from model-centric to data-centric

Data-oriented artificial intelligence can help reduce illusions and biases in generative AI systems, thereby improving the quality of their output.

Translated from The Paradigm Shift from Model-Centric to Data-Centric AI, author Rahul Pradhan has more than 16 years of experience and currently serves as the Vice President of Product and Strategy at Couchbase.

With the advancement of artificial intelligence (AI) such as transformer neural networks and generative adversarial networks (GAN), the technology field is undergoing a major transformation. Not only do these technologies hold enormous potential, they can also unlock innovation and creativity at scale. They can provide more accurate and efficient solutions and bring new business and development opportunities to various industries. The combination of transformer neural networks and GANs enables AI systems to better understand and generate human language, images and sounds, thereby promoting the development of natural language processing, computer vision and speech recognition and other fields. As these technologies become increasingly mature, we can expect more innovative applications and breakthroughs to emerge, bringing more to human society. As AI develops, data becomes critical. Data is the lifeblood that drives machine learning projects, turning concepts into practical insights. However, effectively leveraging data in AI projects is fraught with challenges, which hinders its adoption and realization of transformational value.

To enhance the development of AI, we are currently undergoing a paradigm shift from model-centric to data-centric AI transformation. The purpose of this shift is to reduce the hallucinations and biases that arise in generative adversarial network systems. By focusing on data-centric AI and bringing models closer to the data, we can improve the output of AI models and help enterprises realize their full potential. This shift will bring an important impetus to the development of AI.

Model-centered AI method

The traditional model-centered AI method is the main way of machine learning development. Its core idea is to improve the performance of the model through continuous iteration to generate the best model to handle the given data set. Researchers and engineers spend a lot of time fine-tuning the parameters, number of layers, and other architectural elements of the model. However, because building and fine-tuning models has been a complex and resource-intensive process in the past, requiring deep expertise to produce meaningful results, data has often been treated as a secondary factor. However, in recent years, with the advancement of machine learning technology and the enhancement of computing power, the importance of data has gradually been emphasized. Modern AI methods pay more attention to the quality and diversity of data, training models through larger data sets and more powerful computing power, thereby improving the performance and generalization capabilities of the model. This data-centric approach has become the current mainstream trend in the field of machine learning.

Transformation to data-centric AI

A data-centric approach improves the quality of data for model training, including cleaning, enhancing and ensuring that the data represents real-world scenarios.

As artificial intelligence (AI) models mature and expand in complexity, organizations need to focus on improving data quality and building closer alliances between models and data. In this evolving field, it is important to make a necessary and clear shift: bringing the model closer to the data, rather than transferring data to the model. This improves the quality of model output and reduces the illusions that often plague AI systems. A data-centric approach to AI is a cornerstone for organizations that want to deliver generative and predictive experiences based on the latest data.

Although data-centered AI is the direction of future development, model-centered AI still plays a key role in some scenarios. Model-centric AI is particularly important when data are limited or the goal is to explore model complexity and performance limits. It drives the frontiers of AI research and provides the possibility to solve problems where high-quality data is difficult to obtain. Therefore, model-centric AI is not just a supplement to data-driven AI, but an indispensable approach in the field of AI.

Reimagining AI with Data-Centric Thinking

By shifting to a data-centric approach to AI that ensures data quality and relevance, organizations can gain the following benefits:

Bridging reality by improving data quality

One of the typical benefits of a data-centric approach is the ability to deliver experiences that are tightly integrated with real-world scenarios. Unlike model-centric approaches where models often struggle with the fallacies of low-quality data, data-centric artificial intelligence (AI) seeks to bridge the gap between AI models and the dynamic reality they are trying to navigate.

Mitigating the Shadow of Illusions

AI hallucinations are primarily caused by defective data, characterized by the generation of incorrect or fictitious information. Moving to a data-centric approach can enhance the likelihood of reducing these errors. Training a model on a cleaner, more representative dataset produces more accurate and reliable output.

Unleashing the full potential of predictive and generative AI

With a solid foundation of high-quality data, organizations can unleash the full spectrum of AI’s predictive and generative capabilities. This shift makes AI more capable of interpreting existing data patterns while also generating new insights and experiences, fostering a culture of innovation and informed decision-making.

Leading the future of AI evolution with data

The transformation from model-centered to data-centered artificial intelligence (AI) methods represents a basic change in the way of thinking. This is putting data at the heart of the AI ​​transformation journey. This shift is not just a technical tweak, but a conceptual recalibration that puts data at the heart of AI. As organizations embark on this path, they must cultivate a robust data infrastructure, develop data literacy, and create a culture that values ​​data as the cornerstone of AI's promise.

Blending the best of both

Building powerful AI solutions requires a nuanced understanding of when to emphasize data and focus on model innovation. Balancing the benefits of model-centric and data-centric AI is critical to solving today's AI challenges so that organizations can get the most value from their AI projects. To help ensure that AI models are developed on the latest data and are accurate and reliable, organizations must embrace the transformation to data-centric AI.

The above is the detailed content of The artificial intelligence paradigm shifts from model-centric to data-centric. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

No OpenAI data required, join the list of large code models! UIUC releases StarCoder-15B-Instruct No OpenAI data required, join the list of large code models! UIUC releases StarCoder-15B-Instruct Jun 13, 2024 pm 01:59 PM

At the forefront of software technology, UIUC Zhang Lingming's group, together with researchers from the BigCode organization, recently announced the StarCoder2-15B-Instruct large code model. This innovative achievement achieved a significant breakthrough in code generation tasks, successfully surpassing CodeLlama-70B-Instruct and reaching the top of the code generation performance list. The unique feature of StarCoder2-15B-Instruct is its pure self-alignment strategy. The entire training process is open, transparent, and completely autonomous and controllable. The model generates thousands of instructions via StarCoder2-15B in response to fine-tuning the StarCoder-15B base model without relying on expensive manual annotation.

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Jul 15, 2024 pm 12:21 PM

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G

See all articles