Table of Contents
1. Basic principles
2. Improvement methods
Home Technology peripherals AI Introduction to Transformer positional encoding and how to improve it

Introduction to Transformer positional encoding and how to improve it

Jan 23, 2024 pm 01:09 PM
deep learning

Transformer位置编码介绍 Transformer位置编码如何改进

Transformer is a deep learning model widely used in natural language processing tasks. It uses a self-attention mechanism to capture the relationship between words in the sequence, but ignores the position order of words in the sequence, which may lead to information loss. To solve this problem, Transformer introduces positional encoding. The basic principle of positional encoding is to assign each word in the sequence a position vector, which contains information about the position of the word in the sequence. This way, the model can take into account the positional information of the word by adding the position vector to the word embedding vector. A common method of position encoding is to use sine and cosine functions to generate position vectors. Specifically, for each position and each dimension, the value of the position vector is composed of a sine function and a cosine function. This encoding method allows the model to learn the relationship between different locations. In addition to traditional position encoding methods, some improved methods have been proposed. For example, one can use learned position encoding, where position vectors are learned through a neural network. This method can adaptively adjust the position vector during the training process to better capture the position information in the sequence. In short, the Transformer model uses positional encoding to consider the order of words

1. Basic principles

In Transformer, positional encoding is to convert position information Encoded into a vector. It is added with the word’s embedding vector to get the final representation of each word. The specific calculation method is as follows:

PE_{(i,2j)}=sin(\frac{i}{10000^{2j/d_{model}}})

PE_{(i,2j 1)}=cos(\frac{i}{10000^{2j/d_{model}}})

Among them, i is the position of the word, j is the dimension of the position encoding vector, and d_{model} is the dimension of the Transformer model. With this formula, we can calculate the position encoding value for each position and each dimension. We can combine these values ​​into a positional encoding matrix and then add it to the word embedding matrix to obtain a positional encoding representation of each word.

2. Improvement methods

Although Transformer's positional encoding performs well in many tasks, there are still some improvements that can be used.

1. Learning positional encoding

In the traditional Transformer model, positional encoding is calculated based on a fixed formula, which cannot adapt to different tasks and specific needs of different data sets. Therefore, researchers have proposed some methods to learn positional encoding. One approach is to use neural networks to learn positional encodings. Specifically, researchers use autoencoders or convolutional neural networks to learn positional encoding so that the positional encoding can be adapted to the specific needs of the task and data set. The advantage of this method is that the position encoding can be adaptively adjusted, thereby improving the generalization ability of the model.

2. Random position encoding

Another improvement method is to use random position encoding. This method replaces the fixed position encoding formula by randomly sampling a set of position encoding vectors. The advantage of this method is that it can increase the diversity of the model, thereby improving the robustness and generalization ability of the model. However, since the random position encoding is randomly generated at each training time, more training time is required.

3. Multi-scale position encoding

Multi-scale position encoding is a method to improve position by combining multiple position encoding matrices Coding method. Specifically, the researchers added position encoding matrices at different scales to obtain a richer position encoding representation. The advantage of this method is that it can capture position information at different scales, thereby improving the performance of the model.

4. Local positional encoding

Local positional encoding is a method to improve positional encoding by limiting positional encoding to a local area. Specifically, the researchers limited the calculation of positional encoding to a certain range around the current word, thereby reducing the complexity of positional encoding. The advantage of this approach is that it can reduce computational costs while also improving model performance.

In short, Transformer positional encoding is an important technique that can help the model capture the positional information between words in the sequence, thereby improving the performance of the model. Although traditional positional encoding performs well in many tasks, there are some improvements that can be used. These improvement methods can be selected and combined according to the needs of the task and data set, thereby improving the performance of the model.

The above is the detailed content of Introduction to Transformer positional encoding and how to improve it. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Methods and steps for using BERT for sentiment analysis in Python Methods and steps for using BERT for sentiment analysis in Python Jan 22, 2024 pm 04:24 PM

BERT is a pre-trained deep learning language model proposed by Google in 2018. The full name is BidirectionalEncoderRepresentationsfromTransformers, which is based on the Transformer architecture and has the characteristics of bidirectional encoding. Compared with traditional one-way coding models, BERT can consider contextual information at the same time when processing text, so it performs well in natural language processing tasks. Its bidirectionality enables BERT to better understand the semantic relationships in sentences, thereby improving the expressive ability of the model. Through pre-training and fine-tuning methods, BERT can be used for various natural language processing tasks, such as sentiment analysis, naming

Analysis of commonly used AI activation functions: deep learning practice of Sigmoid, Tanh, ReLU and Softmax Analysis of commonly used AI activation functions: deep learning practice of Sigmoid, Tanh, ReLU and Softmax Dec 28, 2023 pm 11:35 PM

Activation functions play a crucial role in deep learning. They can introduce nonlinear characteristics into neural networks, allowing the network to better learn and simulate complex input-output relationships. The correct selection and use of activation functions has an important impact on the performance and training results of neural networks. This article will introduce four commonly used activation functions: Sigmoid, Tanh, ReLU and Softmax, starting from the introduction, usage scenarios, advantages, disadvantages and optimization solutions. Dimensions are discussed to provide you with a comprehensive understanding of activation functions. 1. Sigmoid function Introduction to SIgmoid function formula: The Sigmoid function is a commonly used nonlinear function that can map any real number to between 0 and 1. It is usually used to unify the

Latent space embedding: explanation and demonstration Latent space embedding: explanation and demonstration Jan 22, 2024 pm 05:30 PM

Latent Space Embedding (LatentSpaceEmbedding) is the process of mapping high-dimensional data to low-dimensional space. In the field of machine learning and deep learning, latent space embedding is usually a neural network model that maps high-dimensional input data into a set of low-dimensional vector representations. This set of vectors is often called "latent vectors" or "latent encodings". The purpose of latent space embedding is to capture important features in the data and represent them into a more concise and understandable form. Through latent space embedding, we can perform operations such as visualizing, classifying, and clustering data in low-dimensional space to better understand and utilize the data. Latent space embedding has wide applications in many fields, such as image generation, feature extraction, dimensionality reduction, etc. Latent space embedding is the main

Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled May 30, 2024 am 09:35 AM

Written previously, today we discuss how deep learning technology can improve the performance of vision-based SLAM (simultaneous localization and mapping) in complex environments. By combining deep feature extraction and depth matching methods, here we introduce a versatile hybrid visual SLAM system designed to improve adaptation in challenging scenarios such as low-light conditions, dynamic lighting, weakly textured areas, and severe jitter. sex. Our system supports multiple modes, including extended monocular, stereo, monocular-inertial, and stereo-inertial configurations. In addition, it also analyzes how to combine visual SLAM with deep learning methods to inspire other research. Through extensive experiments on public datasets and self-sampled data, we demonstrate the superiority of SL-SLAM in terms of positioning accuracy and tracking robustness.

From basics to practice, review the development history of Elasticsearch vector retrieval From basics to practice, review the development history of Elasticsearch vector retrieval Oct 23, 2023 pm 05:17 PM

1. Introduction Vector retrieval has become a core component of modern search and recommendation systems. It enables efficient query matching and recommendations by converting complex objects (such as text, images, or sounds) into numerical vectors and performing similarity searches in multidimensional spaces. From basics to practice, review the development history of Elasticsearch vector retrieval_elasticsearch As a popular open source search engine, Elasticsearch's development in vector retrieval has always attracted much attention. This article will review the development history of Elasticsearch vector retrieval, focusing on the characteristics and progress of each stage. Taking history as a guide, it is convenient for everyone to establish a full range of Elasticsearch vector retrieval.

Understand in one article: the connections and differences between AI, machine learning and deep learning Understand in one article: the connections and differences between AI, machine learning and deep learning Mar 02, 2024 am 11:19 AM

In today's wave of rapid technological changes, Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are like bright stars, leading the new wave of information technology. These three words frequently appear in various cutting-edge discussions and practical applications, but for many explorers who are new to this field, their specific meanings and their internal connections may still be shrouded in mystery. So let's take a look at this picture first. It can be seen that there is a close correlation and progressive relationship between deep learning, machine learning and artificial intelligence. Deep learning is a specific field of machine learning, and machine learning

Super strong! Top 10 deep learning algorithms! Super strong! Top 10 deep learning algorithms! Mar 15, 2024 pm 03:46 PM

Almost 20 years have passed since the concept of deep learning was proposed in 2006. Deep learning, as a revolution in the field of artificial intelligence, has spawned many influential algorithms. So, what do you think are the top 10 algorithms for deep learning? The following are the top algorithms for deep learning in my opinion. They all occupy an important position in terms of innovation, application value and influence. 1. Deep neural network (DNN) background: Deep neural network (DNN), also called multi-layer perceptron, is the most common deep learning algorithm. When it was first invented, it was questioned due to the computing power bottleneck. Until recent years, computing power, The breakthrough came with the explosion of data. DNN is a neural network model that contains multiple hidden layers. In this model, each layer passes input to the next layer and

AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before Jul 16, 2024 am 12:08 AM

Editor | Radish Skin Since the release of the powerful AlphaFold2 in 2021, scientists have been using protein structure prediction models to map various protein structures within cells, discover drugs, and draw a "cosmic map" of every known protein interaction. . Just now, Google DeepMind released the AlphaFold3 model, which can perform joint structure predictions for complexes including proteins, nucleic acids, small molecules, ions and modified residues. The accuracy of AlphaFold3 has been significantly improved compared to many dedicated tools in the past (protein-ligand interaction, protein-nucleic acid interaction, antibody-antigen prediction). This shows that within a single unified deep learning framework, it is possible to achieve

See all articles