Mysql5.6开启慢查询日志_MySQL
[root@slave1 logs]# cat /etc/my.cnf [mysqld]basedir=/usr/local/mysql/ datadir=/usr/local/mysql/data/ user=mysql#打开慢查询日志slow_query_log=on#慢查询日志的位置slow_query_log_file=/usr/local/mysql/logs/mysql-slow#慢查询的基准线超过5s的查询将会被记录long_query_time=5# Disabling symbolic-links is recommended to prevent assorted security riskssymbolic-links=0log-bin=/usr/local/mysql/logs/mysql-binserver-id=1[mysqld_safe]log-error=/var/log/mysqld.logpid-file=/var/run/mysqld/mysqld.pid[mysql]socket=/var/lib/mysql/mysql.sock[root@slave1 logs]# /etc/init.d/mysqld restart[root@slave1 logs]# mysql -uroot -pmysql> show variables like '%query%';+------------------------------+----------------------------------+| Variable_name | Value |+------------------------------+----------------------------------+| binlog_rows_query_log_events | OFF || ft_query_expansion_limit | 20 || have_query_cache | YES || long_query_time | 5.000000 || query_alloc_block_size | 8192 || query_cache_limit | 1048576 || query_cache_min_res_unit | 4096 || query_cache_size | 1048576 || query_cache_type | OFF || query_cache_wlock_invalidate | OFF || query_prealloc_size | 8192 || slow_query_log | ON || slow_query_log_file | /usr/local/mysql/logs/mysql-slow |+------------------------------+----------------------------------+[root@slave1 ~]# cat /usr/local/mysql/logs/mysql-slow/usr/local/mysql/bin/mysqld, Version: 5.6.15-log (Source distribution). started with:Tcp port: 0 Unix socket: (null)Time Id Command Argumentmysql> select 1;mysql> select sleep(3);mysql> select sleep(4);mysql> select sleep(5);mysql> select sleep(6);[root@slave1 logs]# cat mysql-slow /usr/local/mysql/bin/mysqld, Version: 5.6.15-log (Source distribution). started with:Tcp port: 0 Unix socket: (null)Time Id Command Argument# Time: 140618 11:05:53# User@Host: root[root] @ localhost [] Id: 2# Query_time: 5.000229 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0SET timestamp=1403060753;select sleep(5);# Time: 140618 11:06:01# User@Host: root[root] @ localhost [] Id: 2# Query_time: 5.000222 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0SET timestamp=1403060761;select sleep(5);# Time: 140618 11:06:15# User@Host: root[root] @ localhost [] Id: 2# Query_time: 6.000216 Lock_time: 0.000000 Rows_sent: 1 Rows_examined: 0SET timestamp=1403060775;select sleep(6);[root@slave1 logs]# mysqldumpslow mysql-slow Reading mysql slow query log from mysql-slowCount: 3 Time=5.33s (16s) Lock=0.00s (0s) Rows=1.0 (3), root[root]@localhost select sleep(N) #下载hackmysql.com 推出的一款日志分析工具 mysqlsla 。 [root@slave1 opt]# wget http://hackmysql.com/scripts/mysqlsla-2.03.tar.gz[root@slave1 opt]# ll mysqlsla-2.03.tar.gz -rw-r--r-- 1 root root 33674 Nov 11 2008 mysqlsla-2.03.tar.gz[root@slave1 opt]# tar -xf mysqlsla-2.03.tar.gz -C /usr/src/[root@slave1 opt]# cd /usr/src/mysqlsla-2.03/[root@slave1 mysqlsla-2.03]# yum install perl -y[root@slave1 mysqlsla-2.03]# yum install perl-devel -y[root@slave1 mysqlsla-2.03]# yum install perl-CPAN -y[root@slave1 mysqlsla-2.03]# yum install perl-Time-HiRes -y[root@slave1 mysqlsla-2.03]# perl Makefile.PL Checking if your kit is complete...Looks goodWriting Makefile for mysqlsla[root@slave1 mysqlsla-2.03]# makecp lib/mysqlsla.pm blib/lib/mysqlsla.pmcp bin/mysqlsla blib/script/mysqlsla/usr/bin/perl -MExtUtils::MY -e 'MY->fixin(shift)' -- blib/script/mysqlslaManifying blib/man3/mysqlsla.3pm[root@slave1 mysqlsla-2.03]# make installInstalling /usr/local/share/perl5/mysqlsla.pmInstalling /usr/local/share/man/man3/mysqlsla.3pmInstalling /usr/local/bin/mysqlslaAppending installation info to /usr/lib64/perl5/perllocal.pod第一次通过CPAN安装perl模块时,需要进行相关的配置,大部分配置采用默认值,一路回车即可#perl -MCPAN -e shell然后在下面的各个询问中可以改已经配置好的选项然后执行下面的命令保存CPAN>reload indexCPAN>reload cpan安装DBI模块CPAN>install DBI[root@slave1 mysqlsla-2.03]# mysqlsla -lt slow /usr/local/mysql/logs/mysql-slow Report for slow logs: /usr/local/mysql/logs/mysql-slow3 queries total, 1 uniqueSorted by 't_sum'Grand Totals: Time 16 s, Lock 0 s, Rows sent 3, Rows Examined 0______________________________________________________________________ 001 ___Count : 3 (100.00%)Time : 16.000667 s total, 5.333556 s avg, 5.000222 s to 6.000216 s max (100.00%)Lock Time (s) : 0 total, 0 avg, 0 to 0 max (0.00%)Rows sent : 1 avg, 1 to 1 max (100.00%)Rows examined : 0 avg, 0 to 0 max (0.00%)Database : Users : root@localhost : 100.00% (3) of query, 100.00% (3) of all usersQuery abstract:SET timestamp=N; SELECT sleep(N);Query sample:SET timestamp=1403060753;select sleep(5); 使用 percona-toolkit 的 pt-query-digest (好工具)。root@slave1 opt]# wget http://www.percona.com/downloads/percona-toolkit/LATEST/RPM/percona-toolkit-2.2.8-1.noarch.rpm[root@slave1 opt]# ls -s percona-toolkit-2.2.8-1.noarch.rpm 1652 percona-toolkit-2.2.8-1.noarch.rpm[root@slave1 opt]# yum install percona-toolkit-2.2.8-1.noarch.rpm -y[root@slave1 opt]# pt-query-digest --user=root /usr/local/mysql/logs/mysql-slow # 280ms user time, 30ms system time, 24.47M rss, 207.34M vsz# Current date: Wed Jun 18 13:49:23 2014# Hostname: slave1.hadoop.com# Files: /usr/local/mysql/logs/mysql-slow# Overall: 3 total, 1 unique, 0.14 QPS, 0.73x concurrency ________________# Time range: 2014-06-18 11:05:53 to 11:06:15# Attribute total min max avg 95% stddev median# ============ ======= ======= ======= ======= ======= ======= =======# Exec time 16s 5s 6s 5s 6s 369ms 5s# Lock time 0 0 0 0 0 0 0# Rows sent 3 1 1 1 1 0 1# Rows examine 0 0 0 0 0 0 0# Query size 45 15 15 15 15 0 15# Profile# Rank Query ID Response time Calls R/Call V/M Item# ==== ================== ============== ===== ====== ===== ======# 1 0xF9A57DD5A41825CA 16.0007 100.0% 3 5.3336 0.03 SELECT# Query 1: 0.14 QPS, 0.73x concurrency, ID 0xF9A57DD5A41825CA at byte 548# This item is included in the report because it matches --limit.# Scores: V/M = 0.03# Time range: 2014-06-18 11:05:53 to 11:06:15# Attribute pct total min max avg 95% stddev median# ============ === ======= ======= ======= ======= ======= ======= =======# Count 100 3# Exec time 100 16s 5s 6s 5s 6s 369ms 5s# Lock time 0 0 0 0 0 0 0 0# Rows sent 100 3 1 1 1 1 0 1# Rows examine 0 0 0 0 0 0 0 0# Query size 100 45 15 15 15 15 0 15# String:# Hosts localhost# Users root# Query_time distribution# 1us# 10us# 100us# 1ms# 10ms# 100ms# 1s ################################################################# 10s+# EXPLAIN /*!50100 PARTITIONS*/select sleep(6)/G

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

Data Integration Simplification: AmazonRDSMySQL and Redshift's zero ETL integration Efficient data integration is at the heart of a data-driven organization. Traditional ETL (extract, convert, load) processes are complex and time-consuming, especially when integrating databases (such as AmazonRDSMySQL) with data warehouses (such as Redshift). However, AWS provides zero ETL integration solutions that have completely changed this situation, providing a simplified, near-real-time solution for data migration from RDSMySQL to Redshift. This article will dive into RDSMySQL zero ETL integration with Redshift, explaining how it works and the advantages it brings to data engineers and developers.
