sqlalchemy学习日志_MySQL
最近学习sqlalchemy框架,可我没能发现一篇通俗易懂的博文,毕竟本人新手小白还不能理解大神的世界,注释就草草几行全无程序员节操。经过一整天的Traceback和各种error我总算是摸索到一点门路,慌忙整理下以免明早起来又忘了。
导入
>>> from sqlalchemy import * >>> from sqlalchemy.orm import *
建立数据库引擎
>>> engine = create_engine('mysql://root:4QSJQCRC@localhost/testdb',echo=True) >>> metadata = MetaData()
#create_engine()里的格式为:create_engine('数据库://数据库用户名:密码@主机名/要用的数据库名',echo=True) 这里的echo我没做研究,反正让他 =True
#主机名后面也可以加端口号:@localhost:XXXX/testdb,也可省略
#网上看到的文章尽是以sqlite数据库为范例的,我都怀疑那些大拿是不是ctrl c,ctrl d的。自带的文档也讲的不清楚,这步就卡了我很久
#metadata这条我也不太懂,反正是绑定到数据库引擎,调用其中的一些命令可以对数据库作出相应操作
定义表
>>> users_table = Table('users',metadata, ... Column('id',Integer,primary_key=True), ... Column('name',String(40)), ... Column('fullname',String(40)), ... Column('password',String(40)) ... )
#这里只是定义,而并不是真的就在数据库建立了一个表
#记住Table的格式就行,String就是sql里的varchar,网上的文章都可以直接写String而不用加字符长度,可我机子上不行,直接写String会出现如下错误:
# sqlalchemy.exc.CompileError: (in table 'users', column 'name'): VARCHAR requires a length on dialect mysql
#所以我都加了个40的长度
创建表
>>> metadata.create_all(engine) 2014-07-18 23:57:28,023 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'sql_mode' 2014-07-18 23:57:28,023 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,027 INFO sqlalchemy.engine.base.Engine SELECT DATABASE() 2014-07-18 23:57:28,032 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,034 INFO sqlalchemy.engine.base.Engine show collation where `Charset` = 'utf8' and `Collation` = 'utf8_bin' 2014-07-18 23:57:28,034 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,041 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS CHAR(60)) AS anon_1 2014-07-18 23:57:28,042 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,051 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS CHAR(60)) AS anon_1 2014-07-18 23:57:28,051 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,052 INFO sqlalchemy.engine.base.Engine SELECT CAST('test collated returns' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin AS anon_1 2014-07-18 23:57:28,052 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,054 INFO sqlalchemy.engine.base.Engine DESCRIBE `users` 2014-07-18 23:57:28,056 INFO sqlalchemy.engine.base.Engine () 2014-07-18 23:57:28,059 INFO sqlalchemy.engine.base.Engine ROLLBACK 2014-07-18 23:57:28,061 INFO sqlalchemy.engine.base.Engine CREATE TABLE users ( id INTEGER NOT NULL AUTO_INCREMENT, name VARCHAR(40), fullname VARCHAR(40), password VARCHAR(40), PRIMARY KEY (id) )
2014-07-18 23:57:28,062 INFO sqlalchemy.engine.base.Engine ()
2014-07-18 23:57:28,074 INFO sqlalchemy.engine.base.Engine COMMIT
#这步才是真正在数据库中建立了表‘users’。注意:是在数据库testdb中,一开始建立引擎时就指定里数据库testdb
定义一个和表users相匹配的类
>>>class User(object): ... def __init__(self,name,fullname,password): ... self.name = name ... self.fullname = fullname ... self.password = password ... def __repr__(self): ... return "
#__init__ 里的各项属性要和建立的表对应,User这个类就相当于表的模板,类的实例就是表中的一行了
#class User(object)中object不能少,我也不知道为什么反正在我的机子上要是括号内空的就会出错
#__repr__只是用来测试观察
映射
>>> mapper(User,users_table)
#这步就是把表和类联系起来,一一对应了
创建事务并绑定数据库连接
>>> Session = sessionmaker(bind=engine) >>> session = Session()
#session就是一个事务,它在提交和关闭前,维护着一个数据库链接
添加类的实例到事务
>>> session.add_all([ ... User('wendy','Wendy Williams','foobar'), ... User('mary','Mary Contrary','xxg527'), ... User('fred','Fred Flinstone','blah')])
#分别创建了三个类User的实例作为表users的行添加到事务中,此时事务还没提交,数据库中还没在表中建立这些行
提交事务
>>> session.commit() 2014-07-19 01:04:46,359 INFO sqlalchemy.engine.base.Engine BEGIN (implicit) 2014-07-19 01:04:46,362 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, password) VALUES (%s, %s, %s) 2014-07-19 01:04:46,362 INFO sqlalchemy.engine.base.Engine ('wendy', 'Wendy Williams', 'foobar') 2014-07-19 01:04:46,365 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, password) VALUES (%s, %s, %s) 2014-07-19 01:04:46,366 INFO sqlalchemy.engine.base.Engine ('mary', 'Mary Contrary', 'xxg527') 2014-07-19 01:04:46,367 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname, password) VALUES (%s, %s, %s) 2014-07-19 01:04:46,367 INFO sqlalchemy.engine.base.Engine ('fred', 'Fred Flinstone', 'blah') 2014-07-19 01:04:46,368 INFO sqlalchemy.engine.base.Engine COMMIT
#由此数据库中的users表中有了这三行
查询
>>> our_user = session.query(User).filter_by(name='mary').first() 2014-07-19 01:08:38,624 INFO sqlalchemy.engine.base.Engine BEGIN (implicit) 2014-07-19 01:08:38,626 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password FROM users WHERE users.name = %s LIMIT %s 2014-07-19 01:08:38,627 INFO sqlalchemy.engine.base.Engine ('mary', 1) >>> our_user
这些就是基础内容里吧,然后再往下看就so easy了。ok,睡觉

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
