


Classification and Application: Understand the types and uses of MySQL locks
Classification and application of MySQL locks
In order to ensure the consistency and integrity of the data in the case of concurrent access to the database, MySQL provides a lock mechanism. Locks can protect key resources and control access and modification of data by concurrent transactions. This article will introduce the classification and application of MySQL locks and provide specific code examples.
1. Classification of MySQL locks
MySQL locks can be divided into shared locks (Shared Lock) and exclusive locks (Exclusive Lock). Shared locks and exclusive locks are mutually exclusive and cannot exist on the same resource at the same time. Shared locks are used for read operations, allowing multiple transactions to acquire shared locks on the same resource at the same time; exclusive locks are used for write operations, allowing only one transaction to acquire an exclusive lock on a resource.
There are three types of locks commonly used in MySQL:
- Table-level Locks: Table-level locks lock the entire table and can be divided into Read locks and write locks. Read locks are shared locks, and multiple transactions can acquire read locks at the same time; write locks are exclusive locks, and only one transaction can acquire write locks.
- Row-level Locks: Row-level locks lock rows in the table. Only transactions that operate on a certain row will acquire the lock on that row. Row-level locks can accurately control data access by concurrent transactions, but the granularity of row-level locks is smaller, which increases the number and overhead of locks.
- Page-level Locks: Page-level locks lock pages in the table. The size of each page is 16KB. Page-level locks are between table-level locks and row-level locks and can reduce the number and overhead of locks. However, the granularity control of page-level locks is poorer than that of row-level locks, which may lead to lock conflicts.
2. MySQL lock application
- Table-level lock application example:
-- 事务1 START TRANSACTION; LOCK TABLES table_name WRITE; -- 执行写操作 COMMIT; -- 事务2 START TRANSACTION; LOCK TABLES table_name READ; -- 执行读操作 COMMIT;
- Row-level lock application example:
-- 事务1 START TRANSACTION; SELECT * FROM table_name WHERE id = 1 LOCK IN SHARE MODE; -- 读取数据 COMMIT; -- 事务2 START TRANSACTION; SELECT * FROM table_name WHERE id = 1 FOR UPDATE; -- 更新数据 COMMIT;
- Page-level lock application example:
-- 事务1 START TRANSACTION; SELECT * FROM table_name WHERE id BETWEEN 1 AND 100 LOCK IN SHARE MODE; -- 读取数据 COMMIT; -- 事务2 START TRANSACTION; SELECT * FROM table_name WHERE id BETWEEN 1 AND 100 FOR UPDATE; -- 更新数据 COMMIT;
3. Summary
The classification and application of MySQL locks are an important component of database concurrency control part. Choosing an appropriate lock mechanism based on actual needs and using locks rationally can improve the concurrency performance and data consistency of the database. In actual applications, locks need to be selected and used according to specific scenarios to avoid deadlocks and performance problems.
I hope that the introduction of this article can help readers understand the classification and application of MySQL locks, and better understand the use of locks with specific code examples.
The above is the detailed content of Classification and Application: Understand the types and uses of MySQL locks. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In C# development, multi-threaded programming and concurrency control are particularly important in the face of growing data and tasks. This article will introduce some matters that need to be paid attention to in C# development from two aspects: multi-threaded programming and concurrency control. 1. Multi-threaded programming Multi-threaded programming is a technology that uses multi-core resources of the CPU to improve program efficiency. In C# programs, multi-thread programming can be implemented using Thread class, ThreadPool class, Task class and Async/Await. But when doing multi-threaded programming

The Java collection framework manages concurrency through thread-safe collections and concurrency control mechanisms. Thread-safe collections (such as CopyOnWriteArrayList) guarantee data consistency, while non-thread-safe collections (such as ArrayList) require external synchronization. Java provides mechanisms such as locks, atomic operations, ConcurrentHashMap, and CopyOnWriteArrayList to control concurrency, thereby ensuring data integrity and consistency in a multi-threaded environment.

Concurrency control strategy and performance optimization techniques of http.Transport in Go language In Go language, http.Transport can be used to create and manage HTTP request clients. http.Transport is widely used in Go's standard library and provides many configurable parameters, as well as concurrency control functions. In this article, we will discuss how to use http.Transport's concurrency control strategy to optimize performance and show some working example code. one,

Concurrent programming is implemented in Go through Goroutine and concurrency control tools (such as WaitGroup, Mutex), and third-party libraries (such as sync.Pool, sync.semaphore, queue) can be used to extend its functions. These libraries optimize concurrent operations such as task management, resource access restrictions, and code efficiency improvements. An example of using the queue library to process tasks shows the application of third-party libraries in actual concurrency scenarios.

How to use distributed locks to control concurrent access in MySQL? In database systems, high concurrent access is a common problem, and distributed locks are one of the common solutions. This article will introduce how to use distributed locks in MySQL to control concurrent access and provide corresponding code examples. 1. Principle Distributed locks can be used to protect shared resources to ensure that only one thread can access the resource at the same time. In MySQL, distributed locks can be implemented in the following way: Create a file named lock_tabl

The impact of concurrency control on GoLang performance: Memory consumption: Goroutines consume additional memory, and a large number of goroutines may cause memory exhaustion. Scheduling overhead: Creating goroutines will generate scheduling overhead, and frequent creation and destruction of goroutines will affect performance. Lock competition: Lock synchronization is required when multiple goroutines access shared resources. Lock competition will lead to performance degradation and extended latency. Optimization strategy: Use goroutines correctly: only create goroutines when necessary. Limit the number of goroutines: use channel or sync.WaitGroup to manage concurrency. Avoid lock contention: use lock-free data structures or minimize lock holding times

Analysis of MySQL Distributed Transaction Processing and Concurrency Control Project Experience In recent years, with the rapid development of the Internet and the increasing number of users, the requirements for databases have also increased. In large-scale distributed systems, MySQL, as one of the most commonly used relational database management systems, has always played an important role. However, as the data size increases and concurrent access increases, MySQL's performance and scalability face severe challenges. Especially in a distributed environment, how to handle transactions and control concurrency has become an urgent need to solve.

MySQL and Oracle: Comparison of support for multi-version concurrency control and data consistency Introduction: In today's data-intensive applications, database systems play a core role in realizing data storage and management. MySQL and Oracle are two well-known relational database management systems (RDBMS) that are widely used in enterprise-level applications. In a multi-user environment, ensuring data consistency and concurrency control are important functions of the database system. This article will share the multi-version concurrency control and data between MySQL and Oracle.
