Home Backend Development C++ Detailed explanation of trigonometric functions in C++

Detailed explanation of trigonometric functions in C++

Nov 18, 2023 am 11:32 AM
c++ Detailed explanation Trigonometric functions

Detailed explanation of trigonometric functions in C++

Detailed explanation of trigonometric functions in C

Trigonometric functions are one of the basic functions in mathematics and are also widely used in computer programming. C is a powerful programming language that provides a range of functions and libraries for computing trigonometric functions. This article will introduce the trigonometric functions in C in detail, including the usage and precautions of sin, cos, tan, asin, acos, atan and other functions.

  1. sin function: The sin function is used to calculate the sine value of an angle. Its prototype is as follows:

    double sin(double angle);
    Copy after login

    where angle represents the angle value to be calculated, and the return value is calculated sine value. It should be noted that the parameters accepted by trigonometric functions in C are in radians. If the angle system is used, the angles need to be converted into radians. For example, to calculate the sine of an angle of 30 degrees, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double angle = 30.0;
     double radian = angle * M_PI / 180.0;
     double result = sin(radian);
     cout << "sin(30) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: sin(30) = 0.5

  2. cos function: The cos function is used Calculate the cosine value of an angle, its prototype is as follows:

    double cos(double angle);
    Copy after login

    where angle represents the angle value to be calculated, and the return value is the calculated cosine value. Likewise, the cos function in C also accepts arguments in radians. For example, to calculate the cosine of a 60-degree angle, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double angle = 60.0;
     double radian = angle * M_PI / 180.0;
     double result = cos(radian);
     cout << "cos(60) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: cos(60) = 0.5

  3. tan function: The tan function is used Calculate the tangent value of an angle, its prototype is as follows:

    double tan(double angle);
    Copy after login

    where angle represents the angle value to be calculated, and the return value is the calculated tangent value. Likewise, the tan function in C also accepts arguments in radians. For example, to calculate the tangent of a 45-degree angle, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double angle = 45.0;
     double radian = angle * M_PI / 180.0;
     double result = tan(radian);
     cout << "tan(45) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: tan(45) = 1

  4. asin function: asin function is used Calculate the arcsine value of a value (in radians). Its prototype is as follows:

    double asin(double value);
    Copy after login

    where value represents the value to be calculated as the arcsine value, and the return value is the calculated arcsine value in radians. It should be noted that the return value range of the asin function is [-pi/2, pi/2]. When the input value exceeds the value range, the return value will overflow. For example, to calculate the arcsine of 0.5, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double value = 0.5;
     double result = asin(value);
     cout << "asin(0.5) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: asin(0.5) = 0.523599

  5. acos function: The acos function is used for calculation The inverse cosine of a value (in radians), its prototype is as follows:

    double acos(double value);
    Copy after login

    where value represents the value to be calculated as the inverse cosine, and the return value is the calculated inverse cosine in radians. Similar to the asin function, the return value range of the acos function is [0, pi]. For example, to calculate the arc cosine of 0.5, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double value = 0.5;
     double result = acos(value);
     cout << "acos(0.5) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: acos(0.5) = 1.0472

  6. atan function: the atan function is used for calculation The arctangent value of a value (in radians), its prototype is as follows:

    double atan(double value);
    Copy after login

    where value represents the value to calculate the arctangent value, and the return value is the calculated arctangent value in radians. The return value range of the atan function is [-pi/2, pi/2]. For example, to calculate the arc tangent of 1, you can use the following code:

    #include <cmath>
    #include <iostream>
    using namespace std;
    
    int main() {
     double value = 1.0;
     double result = atan(value);
     cout << "atan(1) = " << result << endl;
     return 0;
    }
    Copy after login

    The running result is: atan(1) = 0.785398

In addition to the functions introduced above, C Some other trigonometric functions are also provided, such as sinh, cosh, tanh, asinh, acosh, and atanh. The usage and precautions of these functions are similar to the functions introduced above.

When using trigonometric functions in C, you need to include the cmath header file and link the corresponding math library when compiling (if you use the g compiler, you can add the -lm option). In addition, you also need to pay attention to handling special situations, such as inputting values ​​beyond the scope of the function or dealing with floating-point precision issues.

Through the introduction of this article, readers will have a more comprehensive and in-depth understanding of trigonometric functions in C, and will be able to use and call trigonometric functions more skillfully to perform various mathematical calculations and application development.

The above is the detailed content of Detailed explanation of trigonometric functions in C++. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1261
29
C# Tutorial
1234
24
C# vs. C  : History, Evolution, and Future Prospects C# vs. C : History, Evolution, and Future Prospects Apr 19, 2025 am 12:07 AM

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

How to execute code with vscode How to execute code with vscode Apr 15, 2025 pm 09:51 PM

Executing code in VS Code only takes six steps: 1. Open the project; 2. Create and write the code file; 3. Open the terminal; 4. Navigate to the project directory; 5. Execute the code with the appropriate commands; 6. View the output.

How to use VSCode How to use VSCode Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages ​​and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

See all articles