Home PHP Framework Swoole Swoole development practice: How to optimize resource consumption of concurrent requests

Swoole development practice: How to optimize resource consumption of concurrent requests

Nov 08, 2023 pm 06:24 PM
Resource optimization Concurrent requests swoole development

Swoole development practice: How to optimize resource consumption of concurrent requests

Swoole is a high-performance network communication library based on PHP for developing asynchronous and concurrent network applications. Because of its high-performance characteristics, Swoole has become one of the preferred technologies for many Internet companies. In actual development, how to optimize the resource consumption of concurrent requests has become a challenge that many engineers must face. The following will be combined with code examples to introduce how to use Swoole to optimize the resource consumption of concurrent requests.

1. Use coroutines to improve concurrency

Swoole provides powerful coroutines that can easily implement asynchronous programming. The so-called coroutine refers to a multi-task programming method that saves the current state of a task in the program when it is executed to an intermediate node, switches to another task for execution, and then returns to the original task to continue execution after the other task is completed. . Compared with thread pools, coroutines can avoid a large number of context switches and greatly improve the efficiency of concurrent processing.

The following is a simple example to simulate simultaneous requests to 10 API interfaces and store the results in an array:

<?php
$client = new SwooleCoroutineClient(SWOOLE_TCP);
$client->connect('127.0.0.1', 9501);

$tasks = [];
for ($i = 0; $i < 10; $i++) {
    $data = [
        'id' => $i + 1,
        'name' => 'Task ' . ($i + 1),
        'uri' => '/api/test',
    ];
    $tasks[] = json_encode($data);
}

foreach ($tasks as $data) {
    $client->send($data);
    $response = $client->recv();
    var_dump(json_decode($response, true));
}

$client->close();
Copy after login

In the above code, we use Swoole to provide The SwooleCoroutineClient class to simulate concurrent requests. First we create an array $tasks to store the interface information to be requested. Then for each task we use $client to send the request and wait for the server to respond. When all requests are completed, the client closes the connection.

2. Use asynchronous MySQL client to improve database operation performance

Swoole also provides an asynchronous MySQL client, which can easily implement asynchronous database operations. Compared with traditional synchronous database operations, asynchronous database operations can greatly improve the performance of database operations.

The following is a simple example to demonstrate how to query the database asynchronously when using the Swoole asynchronous MySQL client:

<?php
$client = new SwooleMySQL;

$client->connect([
    'host' => '127.0.0.1',
    'port' => 3306,
    'user' => 'root',
    'password' => '',
    'database' => 'test',
], function($client) {
    $client->query('SELECT * FROM `user` WHERE `id` > 1', function($client, $result) {
        var_dump($result);
        $client->close();
    });
});
Copy after login

In the above code, we use the SwooleMySQL class provided by Swoole to Query the database asynchronously. First we use the connect() method to connect to the database, and then use the query() method to asynchronously query the database. When the query is complete, we use var_dump() to print the query results and close the database connection.

3. Use the Task Worker mechanism provided by Swoole for asynchronous task processing

Swoole also provides a Task Worker mechanism for executing asynchronous tasks. The Task Worker mechanism can very conveniently realize task distribution and execution. Especially in scenarios that require a large amount of computing or IO operations, the Task Worker mechanism can greatly improve the performance of applications.

The following is a simple example to demonstrate how to perform tasks asynchronously when using Swoole's Task Worker mechanism:

<?php
$server = new SwooleServer('127.0.0.1', 9501);
$server->set([
    'worker_num' => 2,
    'task_worker_num' => 2,
]);

$server->on('start', function($server) {
    echo "Swoole server is started at http://127.0.0.1:9501
";
});

$server->on('receive', function($server, $fd, $from_id, $data) {
    $task_id = $server->task($data);
    echo "New task #{$task_id} is dispatched
";
});

$server->on('task', function($server, $task_id, $from_id, $data) {
    echo "Task #{$task_id} is started
";
    sleep(1);
    echo "Task #{$task_id} is finished
";
    $server->finish("Task #{$task_id} is done");
});

$server->on('finish', function($server, $task_id, $data) {
    echo "Task #{$task_id} is done: {$data}
";
});

$server->start();
Copy after login

In the above code, we first create a Swoole server, The number of workers and task workers is set using the set() method. Then we defined the callback function for processing the request. When receiving the client request, we use the task() method to let Swoole hand the request to the task worker for processing. The task worker will execute the task asynchronously and call the finish() callback function when completed. In the callback function that executes the task, we use echo to print the task status, and use sleep() to simulate the time it takes to execute the task.

Conclusion:

Swoole is a very powerful toolset that can greatly optimize the performance and concurrency of PHP applications. By using the features provided by Swoole such as coroutines, asynchronous MySQL clients, and Task Worker mechanisms, we can easily optimize resource consumption for concurrent requests and enhance application performance and reliability.

The above is the detailed content of Swoole development practice: How to optimize resource consumption of concurrent requests. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to create a scalable API gateway using NIO technology in Java functions? How to create a scalable API gateway using NIO technology in Java functions? May 04, 2024 pm 01:12 PM

Answer: Using NIO technology you can create a scalable API gateway in Java functions to handle a large number of concurrent requests. Steps: Create NIOChannel, register event handler, accept connection, register data, read and write handler, process request, send response

How to conduct concurrency testing and debugging in Java concurrent programming? How to conduct concurrency testing and debugging in Java concurrent programming? May 09, 2024 am 09:33 AM

Concurrency testing and debugging Concurrency testing and debugging in Java concurrent programming are crucial and the following techniques are available: Concurrency testing: Unit testing: Isolate and test a single concurrent task. Integration testing: testing the interaction between multiple concurrent tasks. Load testing: Evaluate an application's performance and scalability under heavy load. Concurrency Debugging: Breakpoints: Pause thread execution and inspect variables or execute code. Logging: Record thread events and status. Stack trace: Identify the source of the exception. Visualization tools: Monitor thread activity and resource usage.

Asynchronous processing in golang function error handling Asynchronous processing in golang function error handling May 03, 2024 pm 03:06 PM

In Go functions, asynchronous error handling uses error channels to asynchronously pass errors from goroutines. The specific steps are as follows: Create an error channel. Start a goroutine to perform operations and send errors asynchronously. Use a select statement to receive errors from the channel. Handle errors asynchronously, such as printing or logging error messages. This approach improves the performance and scalability of concurrent code because error handling does not block the calling thread and execution can be canceled.

The impact of excessive tomcat concurrency The impact of excessive tomcat concurrency Apr 21, 2024 am 06:49 AM

High concurrency in Tomcat leads to performance degradation and stability issues, including thread pool exhaustion, resource contention, deadlocks, and memory leaks. Mitigation measures include: adjusting thread pool settings, optimizing resource usage, monitoring server metrics, performing load testing, and using a load balancer.

Detailed explanation of PHP Swoole high-performance framework Detailed explanation of PHP Swoole high-performance framework May 04, 2024 am 08:09 AM

Swoole is a concurrency framework based on PHP coroutines, which has the advantages of high concurrency processing capabilities, low resource consumption, and simplified code development. Its main features include: coroutine concurrency, event-driven networks and concurrent data structures. By using the Swoole framework, developers can greatly improve the performance and throughput of web applications to meet the needs of high-concurrency scenarios.

What exactly is the non-blocking feature of ReactPHP? How to handle its blocking I/O operations? What exactly is the non-blocking feature of ReactPHP? How to handle its blocking I/O operations? Apr 01, 2025 pm 03:09 PM

An official introduction to the non-blocking feature of ReactPHP in-depth interpretation of ReactPHP's non-blocking feature has aroused many developers' questions: "ReactPHPisnon-blockingbydefault...

There is no solution after tomcat starts and flashes. There is no solution after tomcat starts and flashes. Apr 21, 2024 am 07:36 AM

Reasons for Tomcat shutting down immediately after starting include configuration issues (port conflicts, log permissions, Libsocket.so link errors), insufficient resources (out of memory, thread pool full), and software issues (version incompatibility, corrupted JAR files, malware) . Solution steps include: 1. Check the configuration; 2. Ensure sufficient resources; 3. Check for software issues; 4. Other possible solutions (view logs, use the command line, restart, ask for help).

Can nodejs develop large projects? Can nodejs develop large projects? Apr 21, 2024 am 05:54 AM

Yes, nodejs can be used for large projects due to the following reasons: scalability, modularity, performance optimization, toolchain, and community support. Examples of large-scale projects using nodejs include PayPal, LinkedIn, Uber, Netflix, and Walmart.

See all articles