Home Database Redis How Redis implements distributed cache consistency

How Redis implements distributed cache consistency

Nov 07, 2023 pm 04:42 PM
redis cache distributed

How Redis implements distributed cache consistency

How Redis achieves distributed cache consistency requires specific code examples

Cache is one of the important means to improve system performance, and distributed cache can further improve System concurrency and scalability. As a commonly used in-memory database, Redis is fast and efficient and is widely used in the implementation of distributed cache. In distributed cache, maintaining data consistency is crucial. This article will introduce how Redis achieves the consistency of distributed cache and provide specific code examples.

  1. Redis distributed lock
    In order to ensure the consistency of distributed cache, a common method is to use Redis distributed lock. By locking shared resources, you can prevent multiple clients from writing or updating at the same time. In Redis, you can use the SETNX instruction to implement the distributed lock function. Specific code examples are as follows:
def acquire_lock(redis_conn, lock_key, acquire_timeout, lock_expire):
    start_time = time.time()
    while time.time() - start_time < acquire_timeout:
        if redis_conn.setnx(lock_key, 1):
            redis_conn.expire(lock_key, lock_expire)
            return True
        time.sleep(0.001)
    return False

def release_lock(redis_conn, lock_key):
    redis_conn.delete(lock_key)
Copy after login

In the above code, the acquire_lock function attempts to acquire the distributed lock. If the lock is successfully acquired, True is returned, otherwise it is retried within the specified time; the release_lock function releases the distribution style lock.

  1. Redis Subscription and Publishing
    In addition to using distributed locks, Redis's subscription and publishing functions can also be used to achieve the consistency of distributed caches. By subscribing to the same message channel, different cache nodes can be guaranteed to receive updated notifications. The following is a specific code example:
import redis

class CacheSubscriber(object):
    def __init__(self, redis_host, redis_port, channel):
        self.redis_conn = self._create_redis_conn(redis_host, redis_port)
        self.pubsub = self.redis_conn.pubsub()
        self.pubsub.subscribe(channel)
    
    def _create_redis_conn(self, redis_host, redis_port):
        return redis.Redis(host=redis_host, port=redis_port)
    
    def process_messages(self):
        for message in self.pubsub.listen():
            if message['type'] == 'message':
                # 处理缓存更新消息
                self.update_cache(message['data'])
    
    def update_cache(self, data):
        # 更新缓存逻辑
        pass

redis_host = 'localhost'
redis_port = 6379
channel = 'cache_update_channel'
subscriber = CacheSubscriber(redis_host, redis_port, channel)
subscriber.process_messages()
Copy after login

In the above code, CacheSubscriber subscribes to the specified message channel and processes the received messages through the process_messages function. After receiving the cache update message, you can call the update_cache function to perform the corresponding cache update operation.

  1. Redis Data Versioning
    Another way to achieve distributed cache consistency is to use Redis's data versioning. Each cache node maintains a version number, and each time the data is updated, the version number is incremented. When reading cached data, compare the version numbers. If the version numbers are inconsistent, you need to reload the data from the data source. The following is a simple version control example:
import redis

class CacheData(object):
    def __init__(self, redis_host, redis_port, data_key):
        self.data_key = data_key
        self.redis_conn = redis.Redis(host=redis_host, port=redis_port)
    
    def get_data(self):
        data = self.redis_conn.get(self.data_key)
        version = self.redis_conn.get(f'{self.data_key}_version')
        return data, version
    
    def update_data(self, data):
        self.redis_conn.incr(f'{self.data_key}_version')
        self.redis_conn.set(self.data_key, data)
Copy after login

In the above code, the CacheData class maintains cache data and corresponding version numbers. When updating data, increase the value of the version number and update the cached data. When reading data, compare the value of the version number, and if it is inconsistent, reload the data.

Summary:
Redis provides a variety of ways to achieve distributed cache consistency. This article introduces three commonly used methods: distributed locks, subscription and publishing, and data version control. By using these methods, the consistency of each cache node in a distributed environment can be ensured.

The above is the detailed content of How Redis implements distributed cache consistency. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to build the redis cluster mode How to build the redis cluster mode Apr 10, 2025 pm 10:15 PM

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear redis data How to clear redis data Apr 10, 2025 pm 10:06 PM

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

How to read redis queue How to read redis queue Apr 10, 2025 pm 10:12 PM

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to use the redis command How to use the redis command Apr 10, 2025 pm 08:45 PM

Using the Redis directive requires the following steps: Open the Redis client. Enter the command (verb key value). Provides the required parameters (varies from instruction to instruction). Press Enter to execute the command. Redis returns a response indicating the result of the operation (usually OK or -ERR).

How to use redis lock How to use redis lock Apr 10, 2025 pm 08:39 PM

Using Redis to lock operations requires obtaining the lock through the SETNX command, and then using the EXPIRE command to set the expiration time. The specific steps are: (1) Use the SETNX command to try to set a key-value pair; (2) Use the EXPIRE command to set the expiration time for the lock; (3) Use the DEL command to delete the lock when the lock is no longer needed.

How to configure Lua script execution time in centos redis How to configure Lua script execution time in centos redis Apr 14, 2025 pm 02:12 PM

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

How to use the redis command line How to use the redis command line Apr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

How to optimize the performance of debian readdir How to optimize the performance of debian readdir Apr 13, 2025 am 08:48 AM

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

See all articles