


How to perform data reliability verification and model evaluation in Python
How to perform data reliability verification and model evaluation in Python
Data reliability verification and model evaluation are very important when using machine learning and data science models step. This article will introduce how to use Python for data reliability verification and model evaluation, and provide specific code examples.
Data Reliability Validation
Data reliability validation refers to the verification of the data used to determine its quality and reliability. The following are some commonly used data reliability verification methods:
- Missing Value Check
Missing values refer to the situation where some fields or features in the data are empty or missing. To check whether there are missing values in the data, you can use the isnull() or isna() function in the Pandas library. The sample code is as follows:
import pandas as pd # 读取数据 data = pd.read_csv('data.csv') # 检查缺失值 missing_values = data.isnull().sum() print(missing_values)
- Outlier detection
Outliers refer to situations with abnormal relationships or extreme values in the data. Outliers can be detected using methods such as box plots, scatter plots, or Z-score. The following is a sample code for outlier detection using Boxplot:
import seaborn as sns # 读取数据 data = pd.read_csv('data.csv') # 绘制箱线图 sns.boxplot(x='feature', data=data)
- Data distribution check
Data distribution refers to the distribution of data on various features. Data distribution can be examined using methods such as histograms and density plots. The following is an example code for plotting a data distribution plot using the distplot() function in the Seaborn library:
import seaborn as sns # 读取数据 data = pd.read_csv('data.csv') # 绘制数据分布图 sns.distplot(data['feature'], kde=False)
Model Evaluation (Model Evaluation)
Model evaluation is when using a machine learning or data science model The process of evaluating and comparing their performance. The following are some commonly used model evaluation indicators:
- Accuracy (Accuracy)
Accuracy refers to the proportion of correctly predicted samples in the results predicted by the model. Accuracy can be calculated using the accuracy_score() function in the Scikit-learn library. The sample code is as follows:
from sklearn.metrics import accuracy_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算准确率 accuracy = accuracy_score(y_true, y_pred) print(accuracy)
- Precision and Recall
Precision refers to the proportion of samples predicted to be positive by the model that are actually positive, and recall It refers to the proportion of truly positive samples that are predicted to be positive by the model. Precision and recall can be calculated respectively using the precision_score() and recall_score() functions in the Scikit-learn library. The sample code is as follows:
from sklearn.metrics import precision_score, recall_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算精确率 precision = precision_score(y_true, y_pred) # 计算召回率 recall = recall_score(y_true, y_pred) print(precision, recall)
- F1 score (F1-Score)
F1 score is the weighted harmonic average of precision and recall, which can take precision and recall into consideration performance. The F1 score can be calculated using the f1_score() function in the Scikit-learn library. The sample code is as follows:
from sklearn.metrics import f1_score # 真实标签 y_true = [0, 1, 1, 0, 1] # 预测标签 y_pred = [0, 1, 0, 0, 1] # 计算F1分数 f1 = f1_score(y_true, y_pred) print(f1)
In summary, this article introduces how to use Python for data reliability verification and model evaluation, and provides specific code examples. By conducting data reliability verification and model evaluation, we can ensure the reliability of data quality and model performance, and improve the application effects of machine learning and data science.
The above is the detailed content of How to perform data reliability verification and model evaluation in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
