


Failover and recovery mechanism in Nginx load balancing solution
Failover and recovery mechanism in Nginx load balancing solution
Introduction:
For high-load websites, the use of load balancing is to ensure high availability and One of the important means to improve performance. As a powerful open source web server, Nginx's load balancing function has been widely used. In load balancing, how to implement failover and recovery mechanisms is an important issue that needs to be considered. This article will introduce the failover and recovery mechanism in Nginx load balancing and give specific code examples.
1. Failover mechanism
Failover refers to the ability of the system to seamlessly transfer the load to other normal nodes when one or multiple nodes fail. Nginx provides a variety of failover mechanism configuration options. Here are some commonly used methods.
- Health check-based failover
Nginx’s upstream module provides a failover mechanism based on active health checks. By regularly sending health check requests to the backend server, the availability of the node can be judged and load balancing can be performed based on the check results. When a node fails, Nginx will automatically forward requests to other normal nodes to achieve failover.
The following is an example of a load balancing configuration based on health check:
upstream backend { server backend1.example.com:80; server backend2.example.com:80; check interval=3000 rise=2 fall=3 timeout=1000; } server { listen 80; server_name example.com; location / { proxy_pass http://backend; } }
In the above configuration, a health check request will be sent to the backend server every 3 seconds. When there are two consecutive normal responses, the node is considered to be back to normal; when there are three consecutive abnormal responses, the node is considered to be faulty. Nginx will perform load balancing based on node availability and automatically switch to normal nodes.
- Failover based on active detection
The stream module of Nginx provides a failover mechanism based on active detection. By periodically sending probe requests to the backend server, the availability of nodes can be detected and load balancing can be performed based on the probe results. When a node fails, Nginx will automatically forward the request to other normal nodes to achieve failover.
The following is an example of a load balancing configuration based on active detection:
stream { upstream backend { server backend1.example.com:80; server backend2.example.com:80; check interval=3000 rise=2 fall=3 timeout=1000; } server { listen 80; proxy_pass backend; } }
In the above configuration, a detection request will be sent to the backend server every 3 seconds. When there are two consecutive normal responses, the node is considered to be back to normal; when there are three consecutive abnormal responses, the node is considered to be faulty. Nginx will perform load balancing based on node availability and automatically switch to normal nodes.
2. Failure recovery mechanism
Failure recovery refers to the ability of the system to automatically redistribute the load to the node after a node failure is repaired. Nginx provides a variety of configuration options for failure recovery mechanisms. Here are some commonly used methods.
- Failure recovery based on health check
Nginx’s upstream module also provides a failure recovery mechanism based on active health check. After the node's availability is restored, Nginx will automatically redistribute requests to the node.
The following is an example of a health check-based failure recovery configuration:
upstream backend { server backend1.example.com:80; server backend2.example.com:80; check interval=3000 rise=2 fall=3 timeout=1000; } server { listen 80; server_name example.com; location / { proxy_pass http://backend; } }
In the above configuration, when the availability of a node is restored, Nginx will automatically redistribute requests to the node.
- Weight-based failure recovery
Nginx’s upstream module also provides a weight-based failure recovery mechanism. By setting different weight values for nodes, you can control the load distribution ratio. When the availability of a node is restored, the weight value of the node can be adjusted to gradually return it to normal load status.
The following is an example of a weight-based fault recovery configuration:
upstream backend { server backend1.example.com:80 weight=5; server backend2.example.com:80 weight=1; } server { listen 80; server_name example.com; location / { proxy_pass http://backend; } }
In the above configuration, the weight of the backend server backend1 is 5, and the weight of the backend server backend2 is 1. When the availability of backend1 is restored, its weight value can be adjusted so that it gradually returns to 5 to achieve failure recovery.
Conclusion:
This article introduces the failover and recovery mechanism in the Nginx load balancing solution and gives specific code examples. By properly configuring failover and recovery mechanisms, system availability and performance can be improved. In actual applications, the appropriate configuration method can be selected according to specific needs and scenarios to achieve the optimal load balancing effect.
The above is the detailed content of Failover and recovery mechanism in Nginx load balancing solution. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

You can query the Docker container name by following the steps: List all containers (docker ps). Filter the container list (using the grep command). Gets the container name (located in the "NAMES" column).

How to configure an Nginx domain name on a cloud server: Create an A record pointing to the public IP address of the cloud server. Add virtual host blocks in the Nginx configuration file, specifying the listening port, domain name, and website root directory. Restart Nginx to apply the changes. Access the domain name test configuration. Other notes: Install the SSL certificate to enable HTTPS, ensure that the firewall allows port 80 traffic, and wait for DNS resolution to take effect.

The methods that can query the Nginx version are: use the nginx -v command; view the version directive in the nginx.conf file; open the Nginx error page and view the page title.

How to configure Nginx in Windows? Install Nginx and create a virtual host configuration. Modify the main configuration file and include the virtual host configuration. Start or reload Nginx. Test the configuration and view the website. Selectively enable SSL and configure SSL certificates. Selectively set the firewall to allow port 80 and 443 traffic.

Starting an Nginx server requires different steps according to different operating systems: Linux/Unix system: Install the Nginx package (for example, using apt-get or yum). Use systemctl to start an Nginx service (for example, sudo systemctl start nginx). Windows system: Download and install Windows binary files. Start Nginx using the nginx.exe executable (for example, nginx.exe -c conf\nginx.conf). No matter which operating system you use, you can access the server IP

Create a container in Docker: 1. Pull the image: docker pull [mirror name] 2. Create a container: docker run [Options] [mirror name] [Command] 3. Start the container: docker start [Container name]

How to confirm whether Nginx is started: 1. Use the command line: systemctl status nginx (Linux/Unix), netstat -ano | findstr 80 (Windows); 2. Check whether port 80 is open; 3. Check the Nginx startup message in the system log; 4. Use third-party tools, such as Nagios, Zabbix, and Icinga.

Docker container startup steps: Pull the container image: Run "docker pull [mirror name]". Create a container: Use "docker create [options] [mirror name] [commands and parameters]". Start the container: Execute "docker start [Container name or ID]". Check container status: Verify that the container is running with "docker ps".
