Home Backend Development Golang Golang and RabbitMQ implement event-driven large-scale data processing system

Golang and RabbitMQ implement event-driven large-scale data processing system

Sep 28, 2023 am 08:11 AM
golang rabbitmq event driven

Golang and RabbitMQ implement event-driven large-scale data processing system

Golang and RabbitMQ implement an event-driven large-scale data processing system

Abstract:

In today's big data era, processing large-scale data has become a meet the needs of many enterprises. To handle this data efficiently, event-driven architectural patterns are becoming increasingly popular. Golang, as an efficient and reliable programming language, and RabbitMQ, as a reliable message queue system, can be used to build an efficient event-driven large-scale data processing system. This article will introduce how to use Golang and RabbitMQ to build such a system, and provide specific code examples.

  1. Introduction

With the rapid development of the Internet, massive amounts of data continue to emerge, and many companies are facing the challenge of processing this data. The traditional batch processing method can no longer meet the requirements for real-time and responsiveness, so the event-driven architecture model is gradually becoming popular. Event-driven architecture can better handle the challenges of large-scale data processing by splitting the system into discrete, autonomous components and communicating through message passing.

  1. Introduction to Golang and RabbitMQ

Golang is a high-level programming language developed by Google. It has the characteristics of high concurrency and high performance. Through Goroutine and Channel, Golang can easily implement concurrent and synchronous operations, which is very suitable for building efficient event-driven systems.

RabbitMQ is a reliable message queuing system based on the AMQP (Advanced Message Queuing Protocol) protocol, which provides a highly reliable and scalable message delivery mechanism. RabbitMQ can send messages from producers to multiple consumers, enabling decoupling and horizontal scalability.

  1. Building an event-driven data processing system

To demonstrate how to use Golang and RabbitMQ to build an event-driven data processing system, we assume that there is a requirement: from a folder Read files in and perform different processing according to different file types.

First, we need to create a producer to read files from the folder and send the file information to the RabbitMQ queue. The following is an example Golang code:

package main

import (
    "io/ioutil"
    "log"
    "os"
    "path/filepath"

    "github.com/streadway/amqp"
)

func main() {
    conn, _ := amqp.Dial("amqp://guest:guest@localhost:5672/")
    defer conn.Close()

    ch, _ := conn.Channel()
    defer ch.Close()

    files, _ := ioutil.ReadDir("./folder")
    for _, file := range files {
        filePath := filepath.Join("./folder", file.Name())

        data, _ := ioutil.ReadFile(filePath)

        msg := amqp.Publishing{
            ContentType: "text/plain",
            Body:        data,
        }
        
        ch.Publish(
            "",           // exchange
            "file_queue", // routing key
            false,        // mandatory
            false,        // immediate
            msg,
        )
        
        log.Printf("Sent file: %q", filePath)
    }
}
Copy after login

In the above code, we use RabbitMQ’s Go client package github.com/streadway/amqp to create a connection to the RabbitMQ server, And create a channel for communication with the server. We then use the ioutil.ReadDir function to read the files in the folder and the ioutil.ReadFile function to read the file contents. After that, we encapsulate the file content into the message body amqp.Publishing, and use the ch.Publish function to send the message to the RabbitMQ queue named file_queue.

Then, we need to create a consumer to receive messages from the RabbitMQ queue and perform different processing according to the file type. The following is an example Golang code:

package main

import (
    "log"

    "github.com/streadway/amqp"
)

func main() {
    conn, _ := amqp.Dial("amqp://guest:guest@localhost:5672/")
    defer conn.Close()

    ch, _ := conn.Channel()
    defer ch.Close()

    msgs, _ := ch.Consume(
        "file_queue", // queue
        "",           // consumer
        true,         // auto-ack
        true,         // exclusive
        false,        // no-local
        false,        // no-wait
        nil,          // args
    )
    
    for msg := range msgs {
        // 根据文件类型处理消息
        fileContentType := msg.ContentType
        switch fileContentType {
        case "text/plain":
            // 处理文本文件
            log.Printf("Processing text file: %q", string(msg.Body))
        case "image/jpeg":
            // 处理图片文件
            log.Printf("Processing image file")
            // TODO: 处理图片文件的逻辑
        default:
            // 处理其他文件类型
            log.Printf("Processing unknown file type")
            // TODO: 处理未知文件类型的逻辑
        }
    }
}
Copy after login

In the above code, we also use RabbitMQ’s Go client packagegithub.com/streadway/amqp to create a connection to the RabbitMQ server , and create a channel for communication with the server. Then, we use the ch.Consume function to subscribe to consumer messages, and use for msg := range msgs to receive messages in a loop. When processing messages, we determine the file type by checking the ContentType of the message, and perform corresponding processing logic based on different file types.

  1. Summary

This article introduces how to use Golang and RabbitMQ to build an event-driven large-scale data processing system. Through the high concurrency and high performance features of Golang and the reliable messaging mechanism of RabbitMQ, we can easily build an efficient and reliable data processing system. Not only that, Golang and RabbitMQ can also meet the requirements of real-time and responsiveness when processing large-scale data. This article provides specific code examples based on Golang and RabbitMQ to help readers understand how to apply this architectural pattern in actual projects.

Reference:

  • Golang official website: https://golang.org/
  • RabbitMQ official website: https://www.rabbitmq.com/
  • RabbitMQ’s Go client package: https://github.com/streadway/amqp

The above is the detailed content of Golang and RabbitMQ implement event-driven large-scale data processing system. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to safely read and write files using Golang? How to safely read and write files using Golang? Jun 06, 2024 pm 05:14 PM

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pool for Golang database connection? How to configure connection pool for Golang database connection? Jun 06, 2024 am 11:21 AM

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

How to save JSON data to database in Golang? How to save JSON data to database in Golang? Jun 06, 2024 am 11:24 AM

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

Golang framework vs. Go framework: Comparison of internal architecture and external features Golang framework vs. Go framework: Comparison of internal architecture and external features Jun 06, 2024 pm 12:37 PM

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

How to find the first substring matched by a Golang regular expression? How to find the first substring matched by a Golang regular expression? Jun 06, 2024 am 10:51 AM

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Golang framework development practical tutorial: FAQs Golang framework development practical tutorial: FAQs Jun 06, 2024 am 11:02 AM

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.

How to use predefined time zone with Golang? How to use predefined time zone with Golang? Jun 06, 2024 pm 01:02 PM

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.

See all articles