Home Backend Development Python Tutorial How to use Python for NLP to process tabular data in PDF files?

How to use Python for NLP to process tabular data in PDF files?

Sep 27, 2023 pm 03:04 PM
python pdf nlp

如何利用Python for NLP处理PDF文件中的表格数据?

How to use Python for NLP to process tabular data in PDF files?

Abstract: Natural Language Processing (NLP) is an important field involving computer science and artificial intelligence, and processing tabular data in PDF files is a common task in NLP. This article will introduce how to use Python and some commonly used libraries to process tabular data in PDF files, including extracting tabular data, data preprocessing and conversion.

Keywords: Python, NLP, PDF, tabular data

1. Introduction

With the development of technology, PDF files have become a common document format. In these PDF files, tabular data is widely used in various fields, including finance, medical and data analysis, etc. Therefore, how to extract and process these tabular data from PDF files has become a popular issue.

Python is a powerful programming language that provides a wealth of libraries and tools to solve various problems. In the field of NLP, Python has many excellent libraries, such as PDFMiner, Tabula, and Pandas, etc. These libraries can help us process tabular data in PDF files.

2. Install libraries

Before we start using Python to process tabular data in PDF files, we need to install some necessary libraries. We can use the pip package manager to install these libraries. Open a terminal or command line window and enter the following command:

pip install pdfminer.six
pip install tabula-py
pip install pandas
Copy after login

3. Extract table data

First, we need to extract the table data in the PDF file. We can use the PDFMiner library to achieve this functionality. Here is a sample code that uses the PDFMiner library to extract table data:

import pdfminer
import io
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.layout import LAParams
from pdfminer.pdfpage import PDFPage

def extract_text_from_pdf(pdf_path):
    resource_manager = PDFResourceManager()
    output_string = io.StringIO()
    laparams = LAParams()
    with TextConverter(resource_manager, output_string, laparams=laparams) as converter:
        with open(pdf_path, 'rb') as file:
            interpreter = PDFPageInterpreter(resource_manager, converter)
            for page in PDFPage.get_pages(file):
                interpreter.process_page(page)
    
    text = output_string.getvalue()
    output_string.close()
    return text

pdf_path = "example.pdf"
pdf_text = extract_text_from_pdf(pdf_path)
print(pdf_text)
Copy after login

In this example, we first create a PDFResourceManager object, a TextConverter object and some Other necessary objects. Then, we open the PDF file and use PDFPageInterpreter to interpret the file page by page. Finally, we store the extracted text data in a variable and return it.

4. Data preprocessing

After extracting the table data, we need to perform some data preprocessing in order to better process the data. Common preprocessing tasks include removing spaces, cleaning data, handling missing values, etc. Here we use the Pandas library for data preprocessing.

The following is a sample code for data preprocessing using the Pandas library:

import pandas as pd

def preprocess_data(data):
    df = pd.DataFrame(data)
    df = df.applymap(lambda x: x.strip())
    df = df.dropna()
    df = df.reset_index(drop=True)
    
    return df

data = [
    ["Name", "Age", "Gender"],
    ["John", "25", "Male"],
    ["Lisa", "30", "Female"],
    ["Mike", "28", "Male"],
]

df = preprocess_data(data)
print(df)
Copy after login

In this example, we first store the extracted data in a two-dimensional list. Then, we create a Pandas DataFrame object and perform a series of preprocessing operations on it, including removing spaces, cleaning data, and handling missing values. Finally, we print out the preprocessed data.

5. Data conversion

After data preprocessing, we can convert tabular data into other common data structures, such as JSON, CSV or Excel. Here is a sample code that uses the Pandas library to convert data to a CSV file:

def convert_data_to_csv(df, csv_path):
    df.to_csv(csv_path, index=False)

csv_path = "output.csv"
convert_data_to_csv(df, csv_path)
Copy after login

In this example, we use Pandas’s to_csv() function to convert the data to a CSV file, and Save it in the specified path.

6. Summary

Through the introduction of this article, we have learned how to use Python and some commonly used libraries to process tabular data in PDF files. We first use the PDFMiner library to extract text data in PDF files, and then use the Pandas library to preprocess and transform the extracted data.

Of course, the tabular data in PDF files may have different structures and formats, which requires us to make appropriate adjustments and processing according to the specific situation. I hope this article has provided you with some help and guidance in processing tabular data in PDF files.

References:

  1. https://realpython.com/pdf-python/
  2. https://pandas.pydata.org/
  3. https://pdfminer-docs.readthedocs.io/
  4. https://tabula-py.readthedocs.io/

The above is the detailed content of How to use Python for NLP to process tabular data in PDF files?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Can vs code run in Windows 8 Can vs code run in Windows 8 Apr 15, 2025 pm 07:24 PM

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Can visual studio code be used in python Can visual studio code be used in python Apr 15, 2025 pm 08:18 PM

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

See all articles