How to use the minimum spanning tree algorithm in C++
How to use the minimum spanning tree algorithm in C
The minimum spanning tree (Minimum Spanning Tree, MST) is an important concept in graph theory, which means connecting a A subset of the edges of all vertices of an undirected connected graph, and the sum of the weights of these edges is the smallest. There are many algorithms that can be used to solve the minimum spanning tree, such as Prim's algorithm and Kruskal's algorithm. This article will introduce how to use C to implement Prim's algorithm and Kruskal's algorithm, and give specific code examples.
Prim's algorithm is a greedy algorithm. It starts from a vertex of the graph, gradually selects the edge with the smallest weight connected to the current minimum spanning tree, and adds the edge to the minimum spanning tree. The following is a C code example of Prim's algorithm:
#include <iostream> #include <vector> #include <queue> using namespace std; const int INF = 1e9; int prim(vector<vector<pair<int, int>>>& graph) { int n = graph.size(); // 图的顶点数 vector<bool> visited(n, false); // 标记顶点是否已访问 vector<int> dist(n, INF); // 记录顶点到最小生成树的最短距离 int minCost = 0; // 最小生成树的总权值 // 从第一个顶点开始构建最小生成树 dist[0] = 0; // 使用优先队列保存当前距离最小的顶点和权值 priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.push(make_pair(0, 0)); while (!pq.empty()) { int u = pq.top().second; // 当前距离最小的顶点 pq.pop(); // 如果顶点已访问过,跳过 if (visited[u]) { continue; } visited[u] = true; // 标记顶点为已访问 minCost += dist[u]; // 加入顶点到最小生成树的权值 // 对于顶点u的所有邻接顶点v for (auto& edge : graph[u]) { int v = edge.first; int weight = edge.second; // 如果顶点v未访问过,并且到顶点v的距离更小 if (!visited[v] && weight < dist[v]) { dist[v] = weight; pq.push(make_pair(dist[v], v)); } } } return minCost; } int main() { int n, m; // 顶点数和边数 cin >> n >> m; vector<vector<pair<int, int>>> graph(n); // 读取边的信息 for (int i = 0; i < m; ++i) { int u, v, w; // 边的两个顶点及其权值 cin >> u >> v >> w; --u; --v; // 顶点从0开始编号 graph[u].push_back(make_pair(v, w)); graph[v].push_back(make_pair(u, w)); } int minCost = prim(graph); cout << "最小生成树的权值之和为:" << minCost << endl; return 0; }
Kruskal's algorithm is an edge-based greedy algorithm. It selects the edge with the smallest weight from all edges of the graph and determines whether the edge will form a cycle. . If no cycle is formed, add the edge to the minimum spanning tree. The following is a C code example of Kruskal's algorithm:
#include <iostream> #include <vector> #include <algorithm> using namespace std; struct Edge { int u, v, weight; // 边的两个顶点及其权值 Edge(int u, int v, int weight) : u(u), v(v), weight(weight) {} }; const int MAXN = 100; // 最大顶点数 int parent[MAXN]; // 并查集数组 bool compare(Edge a, Edge b) { return a.weight < b.weight; } int findParent(int x) { if (parent[x] == x) { return x; } return parent[x] = findParent(parent[x]); } void unionSet(int x, int y) { int xParent = findParent(x); int yParent = findParent(y); if (xParent != yParent) { parent[yParent] = xParent; } } int kruskal(vector<Edge>& edges, int n) { sort(edges.begin(), edges.end(), compare); int minCost = 0; // 最小生成树的总权值 for (int i = 0; i < n; ++i) { parent[i] = i; // 初始化并查集数组 } for (auto& edge : edges) { int u = edge.u; int v = edge.v; int weight = edge.weight; // 如果顶点u和顶点v不属于同一个连通分量,则将该边加入到最小生成树中 if (findParent(u) != findParent(v)) { unionSet(u, v); minCost += weight; } } return minCost; } int main() { int n, m; // 顶点数和边数 cin >> n >> m; vector<Edge> edges; // 读取边的信息 for (int i = 0; i < m; ++i) { int u, v, w; // 边的两个顶点及其权值 cin >> u >> v >> w; edges.push_back(Edge(u, v, w)); } int minCost = kruskal(edges, n); cout << "最小生成树的权值之和为:" << minCost << endl; return 0; }
Through the above code example, we can use Prim's algorithm and Kruskal's algorithm to solve the minimum spanning tree problem in C. In practical applications, the appropriate algorithm can be selected to solve the problem according to the specific situation. The time complexity of these algorithms is O(ElogV) and O(ElogE) respectively, where V is the number of vertices and E is the number of edges. Therefore, they can also achieve better results when processing large-scale graphs.
The above is the detailed content of How to use the minimum spanning tree algorithm in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Writing C in VS Code is not only feasible, but also efficient and elegant. The key is to install the excellent C/C extension, which provides functions such as code completion, syntax highlighting, and debugging. VS Code's debugging capabilities help you quickly locate bugs, while printf output is an old-fashioned but effective debugging method. In addition, when dynamic memory allocation, the return value should be checked and memory freed to prevent memory leaks, and debugging these issues is convenient in VS Code. Although VS Code cannot directly help with performance optimization, it provides a good development environment for easy analysis of code performance. Good programming habits, readability and maintainability are also crucial. Anyway, VS Code is
